如圖,矩形是由六個正方形組成,其中最小的正方形的面積為1,則此矩形的長為______,寬為______.
因?yàn),最小正方形的面積等于1,
所以,最小正方形的邊長為1,
設(shè)右下角的正方形的邊長為x.
所以,AB=x+1+(x+2)=2x+3,BC=2x+(x+1)=3x+1,
因?yàn)椋畲笳叫蔚倪呴L可表示為2x-1,也可表示為x+3,
所以,2x-1=x+3,
解得:x=4,
所以,AB=11,BC=13,
故答案為:13;11.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:矩形ABCD中,E是CD中點(diǎn),連接AE并延長交BC延長線于F,M是DF中點(diǎn),連接CM.
求證:CM=
1
2
BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△ABC中,AB=AC,矩形BCDE的邊DE分別與AB、AC交于點(diǎn)F、G.求證:EF=DG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,矩形ABCD的周長為20厘米,兩條對角線相交于點(diǎn)O,過點(diǎn)O作AC的垂線EF,分別交AD、BC于E、F點(diǎn),連接CE,則△CDE的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在邊BC上任一位置(如圖①所示)時,易證得結(jié)論:PA2+PC2=PB2+PD2
以下請你探究:當(dāng)P點(diǎn)分別在圖②、圖③中的位置時,即P在矩形ABCD的內(nèi)部和外部時,線段PA2,PB2,PC2,PD2又有怎樣的數(shù)量關(guān)系?請你寫出對上述兩種情況的探究結(jié)論,并證明圖②(P在矩形ABCD的內(nèi)部)的結(jié)論.

答:對圖②的探究結(jié)論為______,對圖③的探究結(jié)論為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=12,AC=20,兩條對角線相交于點(diǎn)O.以O(shè)B、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點(diǎn)A1;再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點(diǎn)O1;再以O(shè)1B1、O1C1為鄰邊作第3個平行四邊形O1B1B2C1…依此類推.
(1)求矩形ABCD的面積;
(2)求第1個平行四邊形OBB1C,第2個平行四邊形和第6個平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,E、F分別是邊AD、BC的中點(diǎn),點(diǎn)G、H在DC邊上,點(diǎn)M、N在AB邊上,且GH=
1
2
DC,MN=
1
3
AB.若AB=10,BC=12,則圖中陰影部分面積和為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,△ABD和△BDC都是邊長為1的等邊三角形.

(1)四邊形ABCD是菱形嗎?為什么?
(2)如圖2,將△BDC沿射線BD方向平移到△B1D1C1的位置,則四邊形ABC1D1是平行四邊形嗎?為什么?
(3)在△BDC移動過程中,四邊形ABC1D1有可能是矩形嗎?如果是,請求出點(diǎn)B移動的距離(寫出過程);如果不是,請說明理由(圖3供操作時使用).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=2AD,E是CD上一點(diǎn),且AE=AB,則∠CBE的度數(shù)是( 。
A.30°B.22.5°C.15°D.10°

查看答案和解析>>

同步練習(xí)冊答案