【題目】已知Rt△ABC的斜邊AB=6 cm,直角邊AC=3 cm.
(1)以C為圓心,2 cm長為半徑的圓和AB的位置關(guān)系是_________;
(2)以C為圓心,4 cm長為半徑的圓和AB的位置關(guān)系是_________;
(3)如果以C為圓心的圓和AB相切,則半徑長為_________。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014貴州黔東南)黔東南州某超市計劃購進(jìn)一批甲、乙兩種玩具,已知5件甲種玩具的進(jìn)價與3件乙種玩具的進(jìn)價的和為231元,2件甲種玩具的進(jìn)價與3件乙種玩具的進(jìn)價的和為141元.
(1)求每件甲種、乙種玩具的進(jìn)價分別是多少元;
(2)如果購進(jìn)甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進(jìn)甲種玩具超過20件,超出部分可以享受7折優(yōu)惠.若購進(jìn)x(x>0)件甲種玩具需要花費y元,請你求出y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,超市決定在甲、乙兩種玩具中選購其中一種,且數(shù)量超過20件,請你幫助超市判斷購進(jìn)哪種玩具省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)y=x+(x>0)與y=x+(x>0,a>0)的相關(guān)性質(zhì).
(1)小聰同學(xué)對函數(shù)y=x+(x>0)進(jìn)行了如下列表、描點,請你幫他完成連線的步驟;觀察圖象可得它的最小值為 ,它的另一條性質(zhì)為 ;
x | … | 1 | 2 | 3 | … | |||||
y | … | 2 | … |
(2)請用配方法求函數(shù)y=x+(x>0)的最小值;
(3)猜想函數(shù)y=x+(x>0,a>0)的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,P為斜邊BC上一點(PB<CP),分別過點B,C作BE⊥AP于點E,CD⊥AP于點D.
(1)求證:AD=BE;
(2)若AE=2DE=2,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在△DAE中, ∠DAE=40°, B、C兩點在直線DE上,且∠BAE=∠BEA,∠CAD=∠CDA,則∠BAC的大小是( 。
A.100°B.90°C.80°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD、BE為高,AN為角平分線,OM平分∠BOC交BC于M.
(1) 若∠BAC=,求∠BOM;
(2) 求證: OM∥AN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的中線, DE⊥AB于E, DF⊥AC于F, 且BE=CF, 求證:(1)AD是∠BAC的平分線;(2)AB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①兩點之間,線段最短②③過個點可以畫無數(shù)多條直線,過個點也可以畫無數(shù)多條直線;④如果與是同類項,那么與互為相反數(shù);⑤珠穆朗瑪峰是世界最高峰,它的海拔約為米,這個數(shù)字可以用科學(xué)記數(shù)法表示為;⑥某商店有兩個進(jìn)價不同的商品都賣了元,其中一個盈利,另一個虧損,所以這家商店在這次買賣中是賺了;其中,正確的是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com