(2013•湖北)如圖,已知直線AB∥CD,∠GEB的平分線EF交CD于點F,∠1=40°,則∠2等于( 。
分析:根據(jù)平行線的性質(zhì)可得∠GEB=∠1=40°,然后根據(jù)EF為∠GEB的平分線可得出∠FEB的度數(shù),根據(jù)兩直線平行,同旁內(nèi)角互補即可得出∠2的度數(shù).
解答:解:∵AB∥CD,
∴∠GEB=∠1=40°,
∵EF為∠GEB的平分線,
∴∠FEB=
1
2
∠GEB=20°,
∴∠2=180°-∠FEB=160°.
故選D.
點評:本題考查了平行線的性質(zhì),解答本題的關(guān)鍵是掌握平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分線交BC于點M,交AB于點E,AC的垂直平分線交BC于點N,交AC于點F,則MN的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,兩個完全相同的三角尺ABC和DEF在直線l上滑動.要使四邊形CBFE為菱形,還需添加的一個條件是
答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等
答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等
(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,正方形ABCD的對角線相交于點O,正三角形OEF繞點O旋轉(zhuǎn).在旋轉(zhuǎn)過程中,當(dāng)AE=BF時,∠AOE的大小是
15°或165°
15°或165°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,在平面直角坐標(biāo)系中,雙曲線y=
m
x
和直線y=kx+b交于A,B兩點,點A的坐標(biāo)為(-3,2),BC⊥y軸于點C,且OC=6BC.
(1)求雙曲線和直線的解析式;
(2)直接寫出不等式
m
x
>kx+b
的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖北)如圖,已知拋物線y=ax2+bx-4經(jīng)過A(-8,0),B(2,0)兩點,直線x=-4交x軸于點C,交拋物線于點D.
(1)求該拋物線的解析式;
(2)點P在拋物線上,點E在直線x=-4上,若以A,O,E,P為頂點的四邊形是平行四邊形,求點P的坐標(biāo);
(3)若B,D,C三點到同一條直線的距離分別是d1,d2,d3,問是否存在直線l,使d1=d2=
d32
?若存在,請直接寫出d3的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案