【題目】A,CB三地依次在一條筆直的道路上,甲、乙兩車同時(shí)分別從A,B兩地出發(fā),相向而行,甲車從A地行駛到B地就停止,乙車從B地行駛到A地后立即以相同的速度返回B地,在整個(gè)行駛的過程中,甲、乙兩車均保持勻速行駛,甲、乙兩車距C地的距離之和ykm)與甲車出發(fā)的時(shí)間th)之間的函數(shù)關(guān)系如圖所示,則乙車第二次到達(dá)C地時(shí),甲車距B地的距離為______km

【答案】120

【解析】

先根據(jù)函數(shù)圖象提供的信息,求得乙車的速度和甲車的速度,還可以求ABAC的長(zhǎng),根據(jù)乙第二次到達(dá)C地的時(shí)間,計(jì)算甲車距B地的距離.

由題意得:A地到C地甲走了2個(gè)小時(shí),乙走了1個(gè)小時(shí),

設(shè)甲的速度為akm/h,則乙的速度為2akm/h,

2a+3a-2a=180,

a=60,

A、B兩地的距離為:2a+4a=6a=360

A、C兩地的距離為:2×60=120

乙第二次到達(dá)C地的時(shí)間為:=4h,

360-4×60=120(千米),

答:則乙車第二次到達(dá)C地時(shí),甲車距B地的距離為120km

故答案為:120

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中不一定是相似圖形的是( )

A. 兩個(gè)等邊三角形B. 兩個(gè)等腰直角三角形

C. 兩個(gè)正方形D. 兩個(gè)長(zhǎng)方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0),直線y=kx3k+4與O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為( ).

A.22 B.24 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABO中,∠B=90°,∠OAB=30°,OA=3.以點(diǎn)O為原點(diǎn),斜邊OA所在直線為x軸,建立平面直角坐標(biāo)系,以點(diǎn)P4,0)為圓心,PA長(zhǎng)為半徑畫圓,⊙Px軸的另一交點(diǎn)為N,點(diǎn)M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts,解答下列問題:

(發(fā)現(xiàn))(1的長(zhǎng)度為多少;

2)當(dāng)t=2s時(shí),求扇形MPN(陰影部分)與RtABO重疊部分的面積.

(探究)當(dāng)⊙P和△ABO的邊所在的直線相切時(shí),求點(diǎn)P的坐標(biāo).

(拓展)當(dāng)RtABO的邊有兩個(gè)交點(diǎn)時(shí),請(qǐng)你直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點(diǎn)A落在對(duì)角線DB上的點(diǎn)F處,折痕為DE,打開矩形紙片,并連接EF

的長(zhǎng)為多少;

AE的長(zhǎng);

BE上是否存在點(diǎn)P,使得的值最。咳舸嬖,請(qǐng)你畫出點(diǎn)P的位置,并求出這個(gè)最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線BDAD,ECD上一點(diǎn),連接AEBD于點(diǎn)FGAF的中點(diǎn),連接DG

1)如圖1,若DG=DF=1,BF=3,求CD的長(zhǎng);

2)如圖2,連接BE,且BE=AD,∠AEB=90°,M、N分別為DGBD上的點(diǎn),且DM=BNHAB的中點(diǎn),連接HMHN,求證:∠MHN=AFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校體育組為了解全校學(xué)生“最喜歡的一項(xiàng)球類項(xiàng)目”,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)統(tǒng)計(jì)圖回答下列問題:

(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)請(qǐng)你估計(jì)全校500名學(xué)生中最喜歡“排球”項(xiàng)目的有多少名?

(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對(duì)應(yīng)的圓心角是多少度?

(4)籃球教練在制定訓(xùn)練計(jì)劃前,將從最喜歡籃球項(xiàng)目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個(gè)別座談,請(qǐng)用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,ABC=30°,則:AC=AB.

探究結(jié)論:小明同學(xué)對(duì)以上結(jié)論作了進(jìn)一步研究.

(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BECE之間的數(shù)量關(guān)系為  

(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BEDE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.

(3)當(dāng)點(diǎn)D為邊CB延長(zhǎng)線上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線段BEDE之間存在怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論  

拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)Bx軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等邊ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案