【題目】如圖,平行四邊形OABC的頂點O在坐標原點,頂點A,C在反比例函數(shù)y= 的圖象上,點A的橫坐標為4,點B的橫坐標為6,且平行四邊形OABC的面積為9,則k的值為_____

【答案】6

【解析】

首先過點CCD⊥x軸于點D,過點AAE⊥x軸于點E,作點BBF⊥x軸,作AF∥x軸,交于點F,連接AC,易求得點C的橫坐標為2,又由平行四邊形OABC的面積為9,可得

解此方程即可求得k的值.

解:過點CCD⊥x軸于點D,過點AAE⊥x軸于點E,作點BBF⊥x軸,作AF∥x軸,交于點F,連接AC,

∵四邊形OABC是平行四邊形,

∴OC=AB,OC∥AB,

∴∠OCB+∠ABC=180°,

∴∠OCD+∠BCD+∠ABC=180°,

∵CD∥BF,

∴∠BCD+∠CBF=180°,

∴∠BCD+∠ABC+∠ABF=180°

∴∠OCD=∠ABF,

在△OCD和△ABF中,

∴△OCD≌△ABF(AAS),

∴OD=AF,

∵點A的橫坐標為4,點B的橫坐標為6,

∴AF=2,

∴OD=2,

即點C的橫坐標為2,

∵頂點A,C在反比例函數(shù)的圖象上,

∴點AC,S△OCD=S△OAE,

∴DE=OE-OD=4-2=2,

∵平行四邊形OABC的面積為9,

∴S△OAC=,

∴S△OAC=S△OCD+S梯形AEDC-S△OAE=S梯形AEDC= =

解得:k=6.

故答案為:6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點D,交AB于點E,過點DDFAB,垂足為F,連接DE.

(1)求證:直線DF與⊙O相切;

(2)求證:BF=EF;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段,是直線上一動點,點分別為,的中點,對下列各值:①線段的長;②的周長;③的面積;④直線,之間的距離;⑤的大。渲胁粫S點的移動而改變的是_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABCBC的中點,連接AD并延長到點E,使DE=AD,連接BE.

(1)哪兩個圖形成中心對稱?

(2)已知△ADC的面積為4,求△ABE的面積;

(3)已知AB=5,AC=3,求AD的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形OABC的頂點O與坐標原點重合,點B的坐標為(68),動點D、E分別從點BA同時出發(fā),沿射線BA運動,點D、E的運動速度均為每秒2個單位,設(shè)D、E的運動時間為t秒.連接OD、CE交于點F

1)如圖1,求點F的縱坐標;

2)若點GOA的中點,在點D、E運動過程中,設(shè)GEF的面積為y,求yt的關(guān)系式;

3)在(2)的條件下,連接BG,線段BGOD交于點K,若,坐標平面內(nèi)是否存在點M,使以DE、K、M為頂點的四邊形為平行四邊形,如果存在,請求出點M的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是作一個角的角平分線的方法:以的頂點為圓心,以任意長為半徑畫弧,分別交兩點,再分別以為圓心,大于長為半徑作畫弧,兩條弧交于點,作射線,過點于點.

(1)若,求的度數(shù);

(2)若,垂足為,求證: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線ABx軸于點A,0),交y軸于點B0),且b滿足

1)求證:OA=OB;

2)如圖1,若C的坐標為(-1,0),且AHBC于點HAHOB于點P,試求點P的坐標;

3)如圖2,連接OH,求證:∠OHP=45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①所示,將繞頂點按逆時針方向旋轉(zhuǎn)角,得到,,分別與、交于點、相交于點.求證:;

2)如圖②所示,是全等的等腰直角三角形,,、分別交于點,請說明,,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一次函數(shù)ykx+m的圖象經(jīng)過二次函數(shù)yax2+bx+c的頂點,我們則稱這兩個函數(shù)為丘比特函數(shù)組

1)請判斷一次函數(shù)y=﹣3x+5和二次函數(shù)yx24x+5是否為丘比特函數(shù)組,并說明理由.

2)若一次函數(shù)yx+2和二次函數(shù)yax2+bx+c丘比特函數(shù)組,已知二次函數(shù)yax2+bx+c頂點在二次函數(shù)y2x23x4圖象上并且二次函數(shù)yax2+bx+c經(jīng)過一次函數(shù)yx+2y軸的交點,求二次函數(shù)yax2+bx+c的解析式;

3)當﹣3≤x≤1時,二次函數(shù)yx22x4的最小值為a,若丘比特函數(shù)組中的一次函數(shù)y2x+3和二次函數(shù)yax2+bx+cb、c為參數(shù))相交于PQ兩點請問PQ的長度為定值嗎?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案