4.若|x|=2,y2=9,且xy<0,則x-y等于(  )
A.1或-1B.5或-5C.1或5D.-1或-5

分析 先由絕對(duì)值和平方根的定義求得x、y的值,然后根據(jù)xy<0分類計(jì)算即可.

解答 解:因?yàn)閨x|=2,y2=9,
所以x=±2,y=±3,
因?yàn)閤y<0,
所以x=2,y=-3,所以x-y=2+3=5;
所以x=-2,y=3,所以x-y=-2-3=-5;
故選B

點(diǎn)評(píng) 本題主要考查的平方根的定義、絕對(duì)值、有理數(shù)的加法,求得當(dāng)x=2時(shí),y=-3,當(dāng)x=-2時(shí),y=3是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列計(jì)算正確的是( 。
A.$\sqrt{(-4)^{2}}$=2B.$\sqrt{2}+\sqrt{3}=\sqrt{5}$C.$\sqrt{3}•\sqrt{6}=3\sqrt{2}$D.$\frac{\sqrt{2}}{\sqrt{5}}$=5$\sqrt{10}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是拋物線y1=ax2+bx+c(a≠0)的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)公共點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:
①2a-b=0;
②abc<0;
③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;
④拋物線與x軸的另一個(gè)公共點(diǎn)是(-1,0);
⑤當(dāng)1<x<4時(shí),有y2>y1
其中正確的有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.關(guān)于單項(xiàng)式-4πxy3的說法中,正確的是( 。
A.系數(shù)是-4,次數(shù)是5B.系數(shù)是-4π,次數(shù)是4
C.系數(shù)是-4,次數(shù)是4D.系數(shù)是-4π,次數(shù)是3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.圖1和圖2,半圓O的直徑AB=2,點(diǎn)P(不與點(diǎn)A,B重合)為半圓上一點(diǎn),將圖形延BP折疊,分別得到點(diǎn)A,O的對(duì)稱點(diǎn)A′,O′,設(shè)∠ABP=α.

(1)當(dāng)α=15°時(shí),過點(diǎn)A′作A′C∥AB,如圖1,判斷A′C與半圓O的位置關(guān)系,并說明理由.
(2)如圖2,當(dāng)α=45°時(shí),BA′與半圓O相切.當(dāng)α=30°時(shí),點(diǎn)O′落在$\widehat{PB}$上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.計(jì)算:
(1)(-2)3+|-8|+(-3)×(-$\frac{1}{3}$)2
(2)[-$\frac{1}{6}$-(-$\frac{5}{12}$+$\frac{2}{15}$)]×(-60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.計(jì)算:
(1)($\sqrt{\frac{1}{3}}$+$\sqrt{27}$)×$\sqrt{3}$.
(2)3$\sqrt{3}$-$\sqrt{8}$+$\sqrt{2}$-$\sqrt{27}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$和$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$都是方程ax+y=b的解,求a與b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在△ABC中,DE∥BC,DE分別交AB,AC于點(diǎn)D,E,若AD:DB=1:2,則△ADE與△ABC的面積之比是( 。
A.1:3B.1:4C.1:9D.1:16

查看答案和解析>>

同步練習(xí)冊(cè)答案