【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE=OC,連接CE,OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為4,∠ABC=60°,求AE的長(zhǎng).

【答案】
(1)證明:在菱形ABCD中,OC= AC.

∴DE=OC.

∵DE∥AC,

∴四邊形OCED是平行四邊形.

∵AC⊥BD,

∴平行四邊形OCED是矩形.

∴OE=CD.


(2)解:在菱形ABCD中,∠ABC=60°,

∴AC=AB=2

∴在矩形OCED中,

CE=OD= =

在Rt△ACE中,

AE= =


【解析】(1)先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對(duì)角線互相垂直求出∠COD=90°,證明OCED是矩形,可得OE=CD即可;(2)根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長(zhǎng)度即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果-33amb27次單項(xiàng)式,則m的值是( 。

A. 6 B. 5 C. 4 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2x+y﹣3,x﹣2y),它關(guān)于x軸的對(duì)稱點(diǎn)A1的坐標(biāo)為(x+3,y﹣4),關(guān)于y軸的對(duì)稱點(diǎn)為A2
(1)求A1、A2的坐標(biāo);
(2)證明:O為線段A1A2的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】薄薄的硬幣在桌面上轉(zhuǎn)動(dòng)時(shí),看上去象球,這說明了

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校草場(chǎng)一角,在長(zhǎng)為b米,寬為a米的長(zhǎng)方形場(chǎng)地中間,有并排兩個(gè)大小一樣的籃球場(chǎng),兩個(gè)籃球場(chǎng)中間以及籃球場(chǎng)與長(zhǎng)方形場(chǎng)地邊沿的距離都為c米.
(1)用代數(shù)式表示這兩個(gè)籃球場(chǎng)的占地面積.
(2)當(dāng)a=30,b=40,c=3時(shí),計(jì)算出一個(gè)籃球場(chǎng)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源.某市對(duì)居民用水實(shí)行階梯水價(jià),居民家庭每月用水量劃分為三個(gè)階梯,一、二、三級(jí)階梯用水的單價(jià)之比等于1:1.5:2.如圖折線表示實(shí)行階梯水價(jià)后每月水費(fèi)y(元)與用水量xm3之間的函數(shù)關(guān)系.其中線段AB表示第二級(jí)階梯時(shí)y與x之間的函數(shù)關(guān)系.

(1)寫出點(diǎn)B的實(shí)際意義;

(2)求線段AB所在直線的表達(dá)式;

(3)某戶5月份按照階梯水價(jià)應(yīng)繳水費(fèi)102元,其相應(yīng)用水量為多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止.點(diǎn)P、Q的速度的速度都是1cm/s,連結(jié)PQ,AQ,CP,設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),四邊形ABQP是矩形?
(2)當(dāng)t為何值時(shí),四邊形AQCP是菱形?
(3)分別求出(2)中菱形AQCP的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若單項(xiàng)式2x2ymxny3的和仍為單項(xiàng)式,則m+n的值是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把(x-1)當(dāng)做一個(gè)整體,合并3(x-1)2-2(x-1)3-5(1-x2+(1-x3的結(jié)果為___________

查看答案和解析>>

同步練習(xí)冊(cè)答案