如圖,二次函數(shù)y=ax2+2ax+b的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C(0,),其頂點(diǎn)在直線y=-2x上.
(1)求a,b的值;
(2)寫(xiě)出當(dāng)-2≤x≤2時(shí),二次函數(shù)y的取值范圍;
(3)以AC、CB為一組鄰邊作□ACBD,則點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D’是否在該二次函數(shù)的圖象上?請(qǐng)說(shuō)明理由.

(1)a=-,b=;(2)-≤y≤2;(3)點(diǎn)D’在該二次函數(shù)的圖象上.

解析試題分析:(1)把C點(diǎn)坐標(biāo)代入拋物線解析式,救出b的值;拋物線的對(duì)稱軸是直線x=-1,頂點(diǎn)坐標(biāo)是(-1,2),可求得a=-;
(2)根據(jù)-2≤x≤2,判斷出二次函數(shù)y的取值范圍;
(3)先求出點(diǎn)D的坐標(biāo),再確定它關(guān)于x軸對(duì)稱的D’的坐標(biāo),再判定出它是否在該二次函數(shù)的圖象上.
試題解析:(1)拋物線的對(duì)稱軸是直線x=-1,頂點(diǎn)坐標(biāo)是(-1,2)
可求得a=-,b=
(2)當(dāng)-2≤x≤2時(shí),-≤y≤2
(3)點(diǎn)D坐標(biāo)是(―2,―
點(diǎn)D’坐標(biāo)是(―2,
經(jīng)檢驗(yàn),點(diǎn)D’在該二次函數(shù)的圖象上
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)(k是實(shí)數(shù)).
教師:請(qǐng)獨(dú)立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫(xiě)到黑板上.
學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動(dòng)一員,又補(bǔ)充一些結(jié)論,并從中選擇如下四條:
①存在函數(shù),其圖像經(jīng)過(guò)(1,0)點(diǎn);
②函數(shù)圖像與坐標(biāo)軸總有三個(gè)不同的交點(diǎn);
③當(dāng)時(shí),不是y隨x的增大而增大就是y隨x的增大而減小;
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù);
教師:請(qǐng)你分別判斷四條結(jié)論的真假,并給出理由,最后簡(jiǎn)單寫(xiě)出解決問(wèn)題時(shí)所用的數(shù)學(xué)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線過(guò)點(diǎn),這條拋物線的對(duì)稱軸與x軸交于點(diǎn)C,點(diǎn)P為射線CB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)D為此拋物線對(duì)稱軸上一點(diǎn),且?CPD=
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,△PCD的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)過(guò)點(diǎn)P作PE⊥DP,連接DE,F(xiàn)為DE的中點(diǎn),試求線段BF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)第xoy中,A點(diǎn)的坐標(biāo)為(0,5).B、C分別是x軸、y軸上的兩個(gè)動(dòng)點(diǎn),C從A出發(fā),沿y軸負(fù)半軸方向以1個(gè)單位/秒的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)B從O出發(fā),沿x軸正半軸方向以1個(gè)單位/秒的速度運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)D是線段OB上一點(diǎn),且BD=OC.點(diǎn)E是第一象限內(nèi)一點(diǎn),且AEDB.
(1)當(dāng)t=4秒時(shí),求過(guò)E、D、B三點(diǎn)的拋物線解析式.
(2)當(dāng)0<t<5時(shí),(如圖甲),∠ECB的大小是否隨著C、B的變化而變化?如果不變,求出它的大。
(3)求證:∠APC=45°
(4)當(dāng)t>5時(shí),(如圖乙)∠APC的大小還是45°嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0), 點(diǎn)C(0,5),點(diǎn)D(1,8)在拋物線上,M為拋物線的頂點(diǎn).求

(1)拋物線的解析式;
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,等邊△ABC邊長(zhǎng)為6,P為BC邊上一點(diǎn),且BP=4,點(diǎn)E、F分別在邊AB、AC上,且∠EPF=60°,設(shè)BE=x,CF=y.
(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(2)①若四邊形AEPF的面積為時(shí),求x的值.
②四邊形AEPF的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值及此時(shí)x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司開(kāi)發(fā)了一種新型的家電產(chǎn)品,又適逢“家電下鄉(xiāng)”的優(yōu)惠政策.現(xiàn)投資40萬(wàn)元用于該產(chǎn)品的廣告促銷,已知該產(chǎn)品的本地銷售量y1(萬(wàn)臺(tái))與本地的廣告費(fèi)用x(萬(wàn)元)之間的函數(shù)關(guān)系滿足,該產(chǎn)品的外地銷售量y2(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系可用如圖所示的拋物線和線段AB來(lái)表示,其中點(diǎn)A為拋物線的頂點(diǎn).

(1)結(jié)合圖象,寫(xiě)出y2(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系式;
(2)求該產(chǎn)品的銷售總量y(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系式;
(3)如何安排廣告費(fèi)用才能使銷售總量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,點(diǎn)E是CD上的一個(gè)動(dòng)點(diǎn)(E不與D重合),過(guò)點(diǎn)E作EF∥AC,交AD于點(diǎn)F(當(dāng)E運(yùn)動(dòng)到C時(shí),EF與AC重合),把△DEF沿著EF對(duì)折,點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)G,如圖①.

⑴ 求CD的長(zhǎng)及∠1的度數(shù);
⑵ 設(shè)DE = x,△GEF與梯形ABCD重疊部分的面積為y.求y與x之間的函數(shù)關(guān)系式,并求x為何值時(shí),y的值最大?最大值是多少?
⑶ 當(dāng)點(diǎn)G剛好落在線段BC上時(shí),如圖②,若此時(shí)將所得到的△EFG沿直線CB向左平移,速度為每秒1個(gè)單位,當(dāng)E點(diǎn)移動(dòng)到線段AB上時(shí)運(yùn)動(dòng)停止.設(shè)平移時(shí)間為t(秒),在平移過(guò)程中是否存在某一時(shí)刻t,使得△ABE為等腰三角形?若存在,請(qǐng)直接寫(xiě)出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

近期,海峽兩岸關(guān)系的氣氛大為改善.大陸相關(guān)部門對(duì)原產(chǎn)臺(tái)灣地區(qū)的15種水果實(shí)施進(jìn)口零關(guān)稅措施,擴(kuò)大了臺(tái)灣水果在大陸的銷售.某經(jīng)銷商銷售了臺(tái)灣水果鳳梨,根據(jù)以往銷售經(jīng)驗(yàn),每天的售價(jià)與銷售量之間有如下關(guān)系:

每千克售價(jià)(元)
40
39
38
37

30
每天銷量(千克)
60
65
70
75

110
設(shè)當(dāng)單價(jià)從40元/千克下調(diào)了x元時(shí),銷售量為y千克;
(1)寫(xiě)出y與x間的函數(shù)關(guān)系式;
(2)如果鳳梨的進(jìn)價(jià)是20元/千克,若不考慮其他情況,那么單價(jià)從40元/千克下調(diào)多少元時(shí),當(dāng)天的銷售利潤(rùn)W最大?利潤(rùn)最大是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案