【題目】“童舒”童裝商場某種童裝進價為每件60元,當售價為每件100元時,每天可賣出120件:童裝的售價每上漲1元,則每天少賣2件.為了讓利于顧客,商場規(guī)定銷售這種重裝時利潤率不能超過90%,則當每件童裝的售價定為多少元時,商場銷售此種童裝時每天可獲得最大利潤?每天的最大利潤是多少元?
【答案】當每件童裝的售價定為110元時,商場銷售此種童裝時每天可獲得最大利潤,每天的最大利潤是5000元.
【解析】
設每件童裝的售價定為x元,利潤為w元,根據每件的利潤乘以銷售量等于總利潤,列出函數關系式,根據二次函數的性質,求得最大值,并計算利潤率是否超過90%,即可得答案.
解:設每件童裝的售價定為x元,利潤為w元,由題意得:
w=(x﹣60)[120﹣2(x﹣100)]
=﹣2x2+440x﹣19200
=﹣2(x﹣110)2+5000
∵﹣2<0
∴當每件童裝的售價定為110元時,商場銷售此種童裝時每天可獲得最大利潤,最大利潤為5000元.
∵×100%≈83.3%<90%
∴每件童裝的售價定為110元符合題意,
∴當每件童裝的售價定為110元時,商場銷售此種童裝時每天可獲得最大利潤,每天的最大利潤是5000元.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動點P以2cm/s的速度從B點出發(fā)沿著B→A的方向運動,點Q以1cm/s的速度從A點出發(fā)沿著A→C的方向運動,當點P到達點A時,點Q也隨之停止運動.設運動時間為t(s),當△APQ是直角三角形時,t的值為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國高鐵迅猛發(fā)展,給我們的出行帶來極大的便捷,如圖1,是某種新設計動車車頭的縱截面一部分,曲線OBA是一開口向左,對稱軸正好是水平線OC的拋物線的一部分,點A、B是車頭玻璃罩的最高點和最低點,AC、BD是兩點到車廂底部的距離,OD=1.5米,BD=1.5米,AC=3米,請你利用所學的函數知識解決以下問題.
(1)為了方便研究問題,需要把曲線OBA繞點O旋轉轉化為我們熟悉的函數,請你在所給的方框內,畫出你旋轉后函數圖象的草圖,在圖中標出點O、A、B、C、D對應的位置,并求你所畫的函數的解析式.
(2)如圖2,駕駛員座椅安裝在水平線OC上一點P處,實驗表明:當PA+PB最小時,駕駛員駕駛時視野最佳,為了達到最佳視野,求OP的長.
(3)駕駛員頭頂到玻璃罩的高度至少為0.3米才感到壓抑,一個駕駛員坐下時頭頂到椅面的距離為1米,在(2)的情況下,座椅最多條件到多少時他才感到舒適?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一塊含有45°的三角板ABC的頂點A放在⊙O上,且AC與⊙O相切于點A(如圖1),將△ABC從點A開始,繞著點A順時針旋轉,設旋轉角為α(0°<α<135°),旋轉后,AC、AB分別與⊙O交于點E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉過程中,有以下幾個量:①弦EF的長;②的長;③∠AFE的度數;④點O到EF的距離.其中不變的量是___________________(填序號);
(2)當α=________°時,BC與⊙O相切(直接寫出答案);
(3)當BC與⊙O相切時,求△AEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4a經過A(﹣1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標
(3)已知點D(m,m+1)在第一象限的拋物線上,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB=80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.
(2)現有一艘寬60 m,頂部截面為長方形且高出水面9 m的輪船要經過這座拱橋,這艘輪船能順利通過嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線y=kx+4(k≠0)交x軸于點A(8,0),交y軸于點B,
(1)k的值是 ;
(2)點C是直線AB上的一個動點,點D和點E分別在x軸和y軸上.
①如圖,點E為線段OB的中點,且四邊形OCED是平行四邊形時,求OCED的周長;
②當CE平行于x軸,CD平行于y軸時,連接DE,若△CDE的面積為,請直接寫出點C的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com