【題目】閱讀下列文字與例題,并解答:

將一個(gè)多項(xiàng)式分組進(jìn)行因式分解后,可用提公因式法或公式法繼續(xù)分解的方法稱作分組分解法.

例如:以下式子的分解因式的方法就稱為分組分解法.

A2+2ab+b2+ac+bc

原式=(a2+2ab+b2)+ac+bc

=(a+b)2+c(a+b)

=(a+b)(a+b+c)

(1)試用分組分解法因式分解:

(2)已知四個(gè)實(shí)數(shù)a,b,c,d,滿足a≠b,c≠d,并且aa+ac=12k,b2+bc=12k,c2+ac=24k,d2+ad=24k

,同時(shí)成立.

①當(dāng)k=1時(shí),求a+c的值;

②當(dāng)k≠0時(shí),用含a的代數(shù)式分別表示、、 (直接寫出答案即可).

【答案】(1)(x-y)(x+y+z);(2)、.;

【解析】

(1利用平方差公式分解,再提取公因式進(jìn)行化簡;(2①將k=1代入得出a2ac的值,再根據(jù)c2ac24k求出ac的值即可;②利用因式相減等于0進(jìn)行求解.

1

2)①當(dāng)k=1 時(shí)得,, .

、、 .

附解:

,,,∴由12k-12k0得 , ,.

.

∴由24k-24k0得 ,, .

,∴.

又由24k12k×2得,即,∴,即,∴,又.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,AD=6,點(diǎn)M為AB上的一動(dòng)點(diǎn),將矩形ABCD沿某一直線對(duì)折,使點(diǎn)C與點(diǎn)M重合,該直線與AB(或BC)、CD(或DA)分別交于點(diǎn)P、Q

(1)用直尺和圓規(guī)在圖甲中畫出折痕所在直線(不要求寫畫法,但要求保留作圖痕跡)
(2)如果PQ與AB、CD都相交,試判斷△MPQ的形狀并證明你的結(jié)論;
(3)設(shè)AM=x,d為點(diǎn)M到直線PQ的距離,y=d2
①求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
②當(dāng)直線PQ恰好通過點(diǎn)D時(shí),求點(diǎn)M到直線PQ的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生的課外閱讀情況,隨機(jī)抽查了10學(xué)生周閱讀用時(shí)數(shù),結(jié)果如下表:

周閱讀用時(shí)數(shù)(小時(shí))

4

5

8

12

學(xué)生人數(shù)(人)

3

4

2

1

則關(guān)于這10名學(xué)生周閱讀所用時(shí)間,下列說法正確的是(  )
A.中位數(shù)是6.5
B.眾數(shù)是12
C.平均數(shù)是3.9
D.方差是6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點(diǎn)E、F,∠EDF=60°,當(dāng)CE=AF時(shí),如圖1小芳同學(xué)得出的結(jié)論是DE=DF.

(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時(shí),如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說明理由
(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長線上時(shí),如圖3請(qǐng)直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張華在一次數(shù)學(xué)活動(dòng)中,利用“在面積一定的矩形中,正方形的周長最短”的結(jié)論,推導(dǎo)出“式子x+ (x>0)的最小值是2”.其推導(dǎo)方法如下:在面積是1的矩形中設(shè)矩形的一邊長為x,則另一邊長是 ,矩形的周長是2(x+ );當(dāng)矩形成為正方形時(shí),就有x= (x>0),解得x=1,這時(shí)矩形的周長2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿張華的推導(dǎo),你求得式子 (x>0)的最小值是(
A.2
B.1
C.6
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線BD上的點(diǎn),∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AB=AC,BAC=90,直角∠EPF的頂點(diǎn)是BC的中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F(xiàn).給出以下五個(gè)結(jié)論:(1)AE=CF;(2)APE =CPF;(3)EPF是等腰直角三角形;(4)= (5)EF=AP其中一定成立的有________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE將△ABE折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為F,連接EF并延長交AD于G,EG將ABCD分為面積相等的兩部分.則SABE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,E,F(xiàn)分別在邊AC、BC上,滿足AE=CF,連接BE,AF交于點(diǎn)P.

(1)求證:ABE≌△CAF;

(2)求∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案