【題目】為緩解交通擁堵,某區(qū)擬計劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面與通道平行),通道水平寬度為8米, ,通道斜面 的長為6米,通道斜面的坡度.
(1)求通道斜面的長為 米;
(2)為增加市民行走的舒適度,擬將設(shè)計圖中的通道斜面的坡度變緩,修改后的通道斜面的坡角為30°,求此時的長.(結(jié)果保留根號)
【答案】(1)7.4米;(2)(8+3-3)米
【解析】試題分析: (1)過點A作AN⊥CB于點N,過點D作DM⊥BC于點M,根據(jù)已知得出DM=CM=CD=3,則AN=DM=3,再解Rt△ANB,由通道斜面AB的坡度i=1: ,得出BN=AN=6,然后根據(jù)勾股定理求出AB;
(2)先解Rt△MED,求出EM=DM=3,得出EC=EM-CM=3-3,再根據(jù)BE=BC-EC即可求解.
試題解析:(1)過點A作AN⊥CB于點N,過點D作DM⊥BC于點M,
∵∠BCD=135°,
∴∠DCM=45°.
∵在Rt△CMD中,∠CMD=90°,CD=6,
∴DM=CM=CD=3,
∴AN=DM=3,
∵通道斜面AB的坡度i=1: ,
∴tan∠ABN=,
∴BN=AN=6,
∴AB==3≈7.4.
即通道斜面AB的長約為7.4米;
(2)∵在Rt△MED中,∠EMD=90°,∠DEM=30°,DM=3,
∴EM=DM=3,
∴EC=EM-CM=3-3,
∴BE=BC-EC=8-(3-3)=(8+3-3)米
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P與點Q都在y軸上,且關(guān)于x軸對稱.
(1)請畫出△ABP關(guān)于x軸的對稱圖形△A′B′Q(其中點A的對稱點用A′表示,點B的對稱點用B′表示);
(2)點P、Q同時都從y軸上的位置出發(fā),分別沿l1、l2方向,以相同的速度向右運動,在運動過程中是否在某個位置使得AP+BQ=A′B成立?若存在,請你在圖中畫出此時PQ的位置(用線段P′Q′表示),若不存在,請你說明理由(注:畫圖時,先用鉛筆畫好,再用鋼筆描黑).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:二元一次方程有無數(shù)組解,每組解記為,稱為亮點,將這些亮點連接得到一條直線,稱這條直線是亮點的隱線,答下列問題:
(1) 已知,則是隱線的亮點的是 ;
(2) 設(shè)是隱線的兩個亮點,求方程中的最小的正整數(shù)解;
(3)已知是實數(shù), 且,若是隱線的一個亮點,求隱線中的最大值和最小值的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有A、B兩個閱覽室,甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一個閱覽室閱讀.
(1)下列事件中,是必然事件的為( )
A.甲、乙同學(xué)都在A閱覽室 B.甲、乙、丙同學(xué)中至少兩人在A閱覽室
C.甲、乙同學(xué)在同一閱覽室 D.甲、乙、丙同學(xué)中至少兩人在同一閱覽室
(2)用畫樹狀圖的方法求甲、乙、丙三名學(xué)生在同一閱覽室閱讀的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長青農(nóng)產(chǎn)品加工廠與 A,B 兩地有公路、鐵路相連.這家工廠從 A 地購買一批原料甲運回工廠,經(jīng)過加工后制成產(chǎn)品乙運到 B 地,其中原料甲和產(chǎn)品乙的重量都是正整數(shù).
已知鐵路運價為 2 元/(噸·千米),公路運價為 8 元/(噸·千米).
(1)若由 A 到 B 的兩次運輸中,原料甲比產(chǎn)品乙多 9 噸,工廠計劃支出鐵路運費超 過 5700 元,公路運費不超過 9680 元.問購買原料甲有哪幾種方案,分別是多少噸?
(2)由于國家出臺惠農(nóng)政策,對運輸農(nóng)產(chǎn)品的車輛免收高速通行費,并給予一定的 財政補(bǔ)貼,綜合惠農(nóng)政策后公路運輸價格下降 m( 0 m 4 且 m 為整數(shù))元, 若由 A 到 B 的兩次運輸中,鐵路運費為 5760 元,公路運費為 5100 元,求 m 的 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡,不寫作法)
①作AC的垂直平分線,交AB于點O,交AC于點D;
②以O為圓心,OA為半徑作圓,交OD的延長線于點E.
(2)在(1)所作的圖形中,解答下列問題.
①點B與⊙O的位置關(guān)系是__;(直接寫出答案)
②若DE=2,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,AC交⊙O于點E,BC交⊙O于點D,F為CE的中點,連接DF.給出以下五個結(jié)論:①BD=DC;②AD=2DF;③ ;④DF是⊙O的切線.其中正確結(jié)論的個數(shù)是:( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 是二次函數(shù),且函數(shù)圖象有最高點.
(1)求k的值;
(2)求頂點坐標(biāo)和對稱軸,并說明當(dāng)x為何值時,y隨x的增大而減少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com