【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2,求BC的長(zhǎng).
【答案】(1)PB是⊙O的切線;
(2)BC=2
【解析】
試題分析:(1)連接OB,由圓周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,證出∠PBA+∠OBA=90°,即可得出結(jié)論;
(2)證明△ABC∽△PBO,得出對(duì)應(yīng)邊成比例,即可求出BC的長(zhǎng).
試題解析:(1)證明:連接OB,如圖所示:
∵AC是⊙O的直徑,
∴∠ABC=90°,
∴∠C+∠BAC=90°,
∵OA=OB,
∴∠BAC=∠OBA,
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,
即PB⊥OB,
∴PB是⊙O的切線;
(2)解:∵⊙O的半徑為2,
∴OB=2,AC=4,
∵OP∥BC,
∴∠C=∠BOP,
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴,
即,
∴BC=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:①對(duì)頂角相等;②內(nèi)錯(cuò)角相等;③平行于同一條直線的兩條直線互相平行; ④如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角相等.其中真命題的是__________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011內(nèi)蒙古赤峰,6,3分)在體育課上,初三年級(jí)某班10名男生“引體向上”的成績(jī)(單位:次)分別是:9,14,10,15,7,9,16,10,11,9,這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)依次是( )
A. 10,8,11 B. 10,8,9 C. 9,8,11 D. 9,10,11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一個(gè)正數(shù)的平方根和立方根都只有一個(gè);
B. 0 的平方根和立方根都是0;
C. 1 的平方根與立方根都等于它本身;
D. 一個(gè)數(shù)的立方根與其自身相等的數(shù)只有-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=mx2+nx+p是y關(guān)于x的二次函數(shù)的條件是( )
A. m=0 B. m≠0 C. mnp≠0 D. m+n+p=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用四舍五入法按要求對(duì)0.06018分別取近似值,其中錯(cuò)誤的是( )
A. 0.1(精確到0.1)
B. 0.06(精確到百分位)
C. 0.06(精確到千分位)
D. 0.0602(精確到0.0001)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)據(jù)中,不能作為直角三角形三邊長(zhǎng)的是( )
A. 9,12,15B. 3, 4, 5C. 1,2,3D. 40,41,9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,1),將A點(diǎn)沿與x軸平行的直線向左平移,使點(diǎn)A的落在直線y=﹣3x﹣2上,則點(diǎn)A平移的距離為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com