【題目】如圖,∠1=∠2,AD=AE,∠B=∠ACE,且B、C、D三點在一條直線上,
(1)試說明△ABD與△ACE全等的理由;
(2)如果∠B=60°,試說明線段AC、CE、CD之間的數(shù)量關(guān)系,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示為3月22日至27日間,我區(qū)每日最高氣溫與最低氣溫的變化情況.
(1)最低氣溫的中位數(shù)是 ℃;3月24日的溫差是 ℃;
(2)分別求出3月22日至27日間的最高氣溫的平均數(shù)、最低氣溫的平均數(shù);
(3)經(jīng)過計算,最高氣溫和最低氣溫的方差分別為6.33、5.67,數(shù)據(jù)更穩(wěn)定的是最高氣溫還是最低氣溫?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y= kx +b的圖象交反比例函數(shù)的圖象于點A(2,-4)和點B(h,-2),交x軸于點C.
(1)求這兩個函數(shù)的解析式;
(2)連接QA、OB.求△AOB的面積;
(3)請直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組鄰邊相等且對角互補的四邊形叫做等補四邊形.
理解:
如圖1,點在上,的平分線交于點,連接求證:四邊形是等補四邊形;
探究:
如圖2,在等補四邊形中連接是否平分請說明理由.
運用:
如圖3,在等補四邊形中,,其外角的平分線交的延長線于點求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形的對角線與交于點,點的坐標為,軸于點,反比例函數(shù)的圖象經(jīng)過點.
(1)求的值;
(2)若將矩形向下平移個單位,使點落在反比例函數(shù)的圖象上,求的值;
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】愛好思考的小明在探究兩條直線的位置關(guān)系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線相互垂直的三角形“中垂三角形”,如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(特例研究)
(1)如圖1,當tan∠PAB=1,c=4時,a=b= ;
(歸納證明)
(2)請你觀察(1)中的計算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖2證明你的結(jié)論;
(拓展證明)
(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF交BE相較于點G,AD=3,AB=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點為坐標原點,直線與軸、軸分別交于點、,點在軸負半軸上,且,把沿軸翻折,使點落在軸上的點處,點為線段上一點,連接交軸于點,若,點的縱坐標為,則直線的解析式為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,菱形ABCD的頂點A在反比例函數(shù)y=(x>0)的圖象上,函數(shù)y=(k>5,x>0)的圖象關(guān)于直線AC對稱,且經(jīng)過點B、D兩點.若AB=2,∠DAB=30°,如下結(jié)論:①O、A、C三點在同一直線上;②點A的橫坐標是;③點D的坐標是(+1,2);④比例系數(shù)k的值為10+.其中不正確的結(jié)論是( )
A.①②③B.②③④C.①③④D.①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按此做法進行下去,點A2020的坐標為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com