【題目】如圖,四邊形ABCD是正方形,G是BC上任意一點(diǎn)(點(diǎn)G與B、C不重合),AE⊥DG于E,CF∥AE交DG于F.請(qǐng)你經(jīng)過觀察、猜測(cè)線段FC、AE、EF之間是否存在一定的數(shù)量關(guān)系?若存在,證明你的結(jié)論;若不存在,請(qǐng)說明理由.

【答案】AE=FC+EF,證明見解析.

【解析】分析:用AAS證明AED≌△DFC,根據(jù)全等三角形有對(duì)應(yīng)邊相等得,AEDFDECF.

詳解:AEFCEF,證明如下

∵四邊形ABCD是正方形,∴ADDC,∠ADC=90度.

又∵AEDG,CFAE

∴∠AED=∠DFC=90°,∴∠EAD+∠ADE=∠FDC+∠ADE=90°,

∴∠EAD=∠FDC

∴△AED≌△DFC(AAS).∴AEDF,EDFC

DFDEEF,

AEFCEF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某長(zhǎng)方形廣場(chǎng)的四角都有一塊半徑相同的圓形的草地,已知圓形的半徑為r米,長(zhǎng)方形長(zhǎng)為a米,寬為b米.

(1)請(qǐng)式表示廣場(chǎng)空地的面積;

(2)若長(zhǎng)方形的長(zhǎng)為300米,寬為200米,圓形的半徑為10米,計(jì)算廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師在黑板上出了一道解方程的題,小明馬上舉起了手,要求到黑板上去做,他是這樣做的:

去分母,得4(2x-1)=1-3(x+2). ①

去括號(hào),得8x-4=1-3x-6. ②

移項(xiàng),得8x+3x=l-6+4 . ③

合并同類項(xiàng),得11x=-1. ④

系數(shù)化為1,得x=-. ⑤

老師說:小明解一元一次方程的一般步驟都掌握了,但解題時(shí)有一步做錯(cuò)了,他錯(cuò)在第   步(填編號(hào)),請(qǐng)你將正確的解方程過程寫出來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)中y=ax2+bx﹣3的x、y滿足表:

x

﹣1

0

1

2

3

y

0

﹣3

﹣4

﹣3

m


(1)求該二次函數(shù)的解析式;
(2)求m的值并直接寫出對(duì)稱軸及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點(diǎn) , 旋轉(zhuǎn)角度是度;
(2)若連結(jié)EF,則△AEF是三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.

(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;

(2)若點(diǎn)P在線段AB上.如圖2,連接AC,當(dāng)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張方桌由個(gè)桌面和條桌腿組成,如果木料可以做方桌的桌面個(gè)或做桌腿條,現(xiàn)有木料,那么應(yīng)需要多少立方米的木料制作桌面,多少立方米的木料制作桌腿才能使桌面和桌腿正好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇準(zhǔn)備完成題目:化簡(jiǎn):,發(fā)現(xiàn)系數(shù)印刷不清楚.

(1)他把猜成3,請(qǐng)你化簡(jiǎn):(3x2+6x+8)–(6x+5x2+2);

(2)他媽媽說:你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).通過計(jì)算說明原題中是幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海上巡邏船在A地巡航,這時(shí)接到B地海上指揮中心緊急通知:在指揮中心北偏西60°方向的C地有一艘漁船遇險(xiǎn),要求馬上前去救援,要求馬上前去救援.此時(shí)C地位于A地北偏西30°方向上,A地位于B地北偏西75°方向上,A、B兩地之間的距離為12海里,則A、C兩地之間的距離為

查看答案和解析>>

同步練習(xí)冊(cè)答案