【題目】如圖,在東西方向的海岸線l上有長(zhǎng)為300米的碼頭AB,在碼頭的最西端A處測(cè)得輪船M在它的北偏東45°方向上;同一時(shí)刻,在A點(diǎn)正東方向距離100米的C處測(cè)得輪船M在北偏東22°方向上.
(1)求輪船M到海岸線l的距離;(結(jié)果精確到0.01米)
(2)如果輪船M沿著南偏東30°的方向航行,那么該輪船能否行至碼頭AB靠岸?請(qǐng)說(shuō)明理由.
(參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.732.)
【答案】(1)167.79;(2)能.理由見(jiàn)解析.
【解析】
(1)過(guò)點(diǎn)M作MD⊥AC交AC的延長(zhǎng)線于D,設(shè)DM=x.由三角函數(shù)表示出CD和AD的長(zhǎng),然后列出方程,解方程即可;
(2)作∠DMF=30°,交l于點(diǎn)F.利用解直角三角形求出DF的長(zhǎng)度,然后得到AF的長(zhǎng)度,與AB進(jìn)行比較,即可得到答案.
解:(1)過(guò)點(diǎn)M作MD⊥AC交AC的延長(zhǎng)線于D,設(shè)DM=x.
∵在Rt△CDM中,CD = DM·tan∠CMD= x·tan22°,
又∵在Rt△ADM中,∠MAC=45°,
∴AD=DM=x,
∵AD=AC+CD=100+ x·tan22°,
∴100+ x·tan22°=x.
∴(米).
答:輪船M到海岸線l的距離約為167.79米.
(2)作∠DMF=30°,交l于點(diǎn)F.
在Rt△DMF中,有:
DF= DM·tan∠FMD= DM·tan30°=DM≈≈96.87米.
∴AF=AC+CD+DF=DM+DF≈167.79+96.87=264.66<300.
∴該輪船能行至碼頭靠岸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一條直線過(guò)點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.
(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);
(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是反比例函數(shù)與一次函數(shù)在軸上方的圖象的交點(diǎn),過(guò)點(diǎn)作軸,垂足是點(diǎn),.一次函數(shù)的圖象與軸的正半軸交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)若梯形的面積是3,求一次函數(shù)的解析式;
(3)結(jié)合這兩個(gè)函數(shù)的完整圖象:當(dāng)時(shí),寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E是BD上一點(diǎn),AE的延長(zhǎng)線交CD于F,交BC的延長(zhǎng)線于G,M是FG的中點(diǎn),連接EC.
(1)求證:∠1=∠2;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為8元/千克,投入市場(chǎng)銷(xiāo)售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷(xiāo)售不會(huì)虧本,且每天銷(xiāo)售量(千克)與銷(xiāo)售單價(jià)(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷(xiāo)售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷(xiāo)售,能否銷(xiāo)售完這批蜜柚?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,,在矩形內(nèi)有一點(diǎn)P,同時(shí)滿足,延長(zhǎng)CP交AD于點(diǎn)E,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(0,﹣2),拋物線y=﹣2x+2的頂點(diǎn)為P,AP+OP的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣3,2),B(﹣1,4),C(0,2).
(1)請(qǐng)畫(huà)出△ABC關(guān)于點(diǎn)O的對(duì)稱(chēng)圖形△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫(huà)出△A2B2C2并求出在旋轉(zhuǎn)過(guò)程中點(diǎn)B所經(jīng)過(guò)的圓弧長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com