【題目】 某單位需要購買一些鋼筆和筆記本.若購買2支鋼筆和1本筆記本需42元,購買3支鋼筆和2本筆記本需68元.
(1)求買一支鋼筆要多少錢?
(2)若購買了鋼筆和筆記本共50件,付款可能是810元嗎?說明理由.
【答案】(1)16;(2)不可能,理由見解析.
【解析】
(1)設一支鋼筆x元,一本筆記本y元,根據(jù)“購買2支鋼筆和1本筆記本需42元,購買3支鋼筆和2本筆記本需68元.”,即可得出關于x、y的二元一次方程組,解之即可得出結論;
(2)設學校購買m支鋼筆,則購買(50﹣m)本筆記本,根據(jù)總價=單價×數(shù)量結合購買的費用為810元,即可得出關于m的一元一次方程,解得m的值為不大于50的正整數(shù)即可.
解:(1)設一支鋼筆x元,一本筆記本y元,
根據(jù)題意得:,
解得:.
答:一支鋼筆16元,一本筆記本10元.
(2)設學校購買m支鋼筆,則購買(50﹣m)本筆記本,
根據(jù)題意得:16m+10(50﹣m)=810,
解得:m=52>50,不符合題意.
答:若購買了鋼筆和筆記本共50件,付款不可能是810元.
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富校園文化生活,促進學生積極參加體育運動,某校準備成立校排球隊,現(xiàn)計劃購進一批甲、乙兩種型號的排球,已知一個甲種型號排球的價格與一個乙種型號排球的價格之和為140元;如果購買6個甲種型號排球和5個乙種型號排球,一共需花費780元.
(1)求每個甲種型號排球和每個乙種型號排球的價格分別是多少元?
(2)學校計劃購買甲、乙兩種型號的排球共26個,其中甲種型號排球的個數(shù)多于乙種型號排球,并且學校購買甲、乙兩種型號排球的預算資金不超過1900元,求該學校共有幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB繞著點A逆時針方向旋轉120°得到線段AC,點B對應點C,在∠BAC的內(nèi)部有一點P,PA=8,PB=4,PC=4,則線段AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線(是常數(shù)),,頂點坐標為.給出下列結論:①若點與點在該拋物線上,當時,則;②關于的一元二次方程無實數(shù)解,那么( )
A.①正確,②正確B.①正確,②錯誤C.①錯誤,②正確D.①錯誤,②錯誤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是AB邊上的一點,以DE為邊作正方形DEFG,DF與BC交于點M,延長EM交GF于點H,EF與GB交于點N,連接CG.
(1)求證:CD⊥CG;
(2)若tan∠MEN=,求的值;
(3)已知正方形ABCD的邊長為1,點E在運動過程中,EM的長能否為?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績n(分) | 評定等級 | 頻數(shù) |
90≤n≤100 | A | 2 |
80≤n<90 | B | |
70≤n<80 | C | 15 |
n<70 | D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大;(結果用度、分、秒表示)
(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同時拋擲兩枚硬幣,按照正面出現(xiàn)的次數(shù),可以分為“2個正面”、“1個正面”和“沒有正面”這3種可能的結果,小紅與小明兩人共做了6組實驗,每組實驗都為同時拋擲兩枚硬幣10次,下表為實驗記錄的統(tǒng)計表:
結果 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 | 第六組 |
兩個正面 | 3 | 3 | 5 | 1 | 4 | 2 |
一個正面 | 6 | 5 | 5 | 5 | 5 | 7 |
沒有正面 | 1 | 2 | 0 | 4 | 1 | 1 |
由上表結果,計算得出現(xiàn)“2個正面”、“1個正面”和“沒有正面”這3種結果的頻率分別是___________________.當試驗組數(shù)增加到很大時,請你對這三種結果的可能性的大小作出預測:______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O且AB=AC,延長BC至點D,使CD=CA,連接AD交⊙O于點E,連接BE、CE.
(1)求證:△ABE≌△CDE;
(2)填空:
①當∠ABC的度數(shù)為 時,四邊形AOCE是菱形;
②若AE=6,EF=4,DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《道德經(jīng)》中的“道生一,一生二,二生三,三生萬物”道出了自然數(shù)的特征.在數(shù)的學習過程中,我們會對其中一些具有某種特性的數(shù)進行研究,如學習自然數(shù)時,我們研究了奇數(shù)、偶數(shù)、質數(shù)、合數(shù)等.現(xiàn)在我們來研究另一種特珠的自然數(shù)—“純數(shù)”.定義;對于自然數(shù)n,在計算n+(n+1)+(n+2)時,各數(shù)位都不產(chǎn)生進位,則稱這個自然數(shù)n為“數(shù)”,例如:32是”純數(shù)”,因為計算32+33+34時,各數(shù)位都不產(chǎn)生進位;23不是“純數(shù)”,因為計算23+24+25時,個位產(chǎn)生了進位.
(1)判斷2019和2020是否是“純數(shù)”?請說明理由;
(2)求出不大于100的“純數(shù)”的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com