【題目】如圖,水平放置的圓柱形排水管的截面為⊙O,有水部分弓形的高為2,弦AB=4 ,求⊙O的半徑.

【答案】解:過點O作OC⊥AB于點C,交 于點D,連接OB,

設(shè)⊙O的半徑為r,則OC=r﹣2,

∵OC⊥AB,

∴BC= AB= ×4 =2 ,

在Rt△BOC中,

∵OC2+BC2=OB2,即(r﹣2)2+(2 2=r2,

解得r=4.


【解析】此類問題通過添加輔助線過點O作OC⊥AB于點C,交弧AB于點D,連接OB,根據(jù)垂徑定理求出BC的長,再用含r的代數(shù)式表示出OC的長,然后根據(jù)勾股定理建立方程求解即可。
【考點精析】通過靈活運用勾股定理的概念和垂徑定理,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點表示的數(shù)為是數(shù)軸上位于點左側(cè)一點,且AB=20,動點點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間t(t>0)秒.

1)寫出數(shù)軸上點表示的數(shù)______;點表示的數(shù)_______(用含的代數(shù)式表示)

2)動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向右勻速運動,若點、同時出發(fā),問多少秒時、之間的距離恰好等于

3)動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,若點、同時出發(fā),問多少秒時、span>之間的距離恰好又等于?

4)若的中點,的中點,在點運動的過程中,線段的長度是否發(fā)生變化?若變化,請說明理由,若不變,請畫出圖形,并求出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于A(1,n)和B兩點.

(1)求反比例函數(shù)的解析式與點B坐標(biāo);
(2)求△AOB的面積;
(3)在第一象限內(nèi),當(dāng)一次函數(shù)y=﹣x+5的值小于反比例函數(shù)y= (k≠0)的值時,寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:

時間(分鐘)

里程數(shù)(公里)

車費(元)

小明

8

8

12

小剛

12

10

16

(1)求x,y的值;

(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點EAB上,點DCB的延長線上,且EDEC

(1)(觀察猜想)當(dāng)點EAB的中點時,如圖1,過點EEFBC,交AC于點F,觀察猜想得到線段AEDB的大小關(guān)系是   ;

(2)(探究證明)當(dāng)點E不是AB的中點時,如圖2,上述結(jié)論是否成立,如果成立,請寫出解答過程,如果不成立,請說明理由;

(3)(拓展延伸)在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且EDEC,若△ABC的邊長為2,AE1,求CD的長(請直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點A11,0)作x軸的垂線,交直線y2x于點B1;點A2與點O關(guān)于直線A1B1對稱;過點A220)作x軸的垂線,交直線y2x于點B2;點A3與點O關(guān)于直線A2B2對稱;過點A340)作x軸的垂線,交直線y2x于點B3;,按此規(guī)律作下去,則點Bn的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,4),且與直線y=﹣ x+1相交于A、B兩點(如圖),A點在y軸上,過點B作BC⊥x軸,垂足為點C(﹣3,0).

(1)求二次函數(shù)的表達(dá)式;
(2)點N是二次函數(shù)圖象上一點(點N在AB上方),過N作NP⊥x軸,垂足為點P,交AB于點M,求MN的最大值;
(3)在(2)的條件下,點N在何位置時,BM與NC相互垂直平分?并求出所有滿足條件的N點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項工程,甲隊單獨做需40天完成,若乙隊先做30天后,甲、乙兩隊一起合做20天恰好完成任務(wù),請問:

1)乙隊單獨做需要多少天才能完成任務(wù)?

2)現(xiàn)將該工程分成兩部分,甲隊做其中一部分工程用了x天,乙隊做另一部分工程用了y天,若x; y都是正整數(shù),且甲隊做的時間不到15天,乙隊做的時間不到70天,那么兩隊實際各做了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A、B、C在坐標(biāo)軸上,且AB、C的坐標(biāo)分別為、過點A的直線ADy軸正半軸交于點D

求直線ADBC的解析式;

如圖2,點E在直線上且在直線BC上方,當(dāng)的面積為6時,求E點坐標(biāo);

的條件下,如圖3,動點M在直線AD上,動點Nx軸上,連接ME、NE、MN,當(dāng)周長最小時,求周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案