【題目】將五個邊長都為2cm的正方形按如圖所示擺放,點A、B、C、D分別是四個正方形的中心,則圖中四塊陰影面積的和為( )
A.2cm2
B.4cm2
C.6cm2
D.8cm2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給網(wǎng)格圖(每小格均為邊長是1的正方形)中完成下列各題:(用直尺畫圖)
(1)畫出格點△ABC(頂點均在格點上)關(guān)于直線DE對稱的△A1B1C1;
(2)在DE上畫出點P,使PB1+PC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1四邊形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°,取AB的中點A1 , 連接A1C,再分別取A1C,BC的中點D1 , C1連接D1C1 . 得到四邊形A1BC1D1 , 如圖2同樣方法操作得到四邊形A2BC2D2 . 如圖3…….如此進行下去,則四邊形AnBCnDn的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的解題過程:
解方程:|x+3|=2.
解:當(dāng)x+3≥0時,原方程可化成為x+3=2
解得x=-1,經(jīng)檢驗x=-1是方程的解;
當(dāng)x+3<0,原方程可化為,-(x+3)=2
解得x=-5,經(jīng)檢驗x=-5是方程的解.
所以原方程的解是x=-1,x=-5.
解答下面的兩個問題:
(1)解方程:|3x-2|-4=0;
探究:當(dāng)值a為何值時,方程|x-2|=a, ①無解;②只有一個解;③有兩個解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角墻角AOB(OA⊥OB,且OA,OB長度不限)中.要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2 .
(1)求這地面矩形的長;
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)“母親節(jié)”前夕,某商店根據(jù)市場調(diào)查,用3000元購進第一批盒裝花,上市后很快售完,接著又用5000元購進第二批這種盒裝花.已知第二批所購花的盒數(shù)是第一批所購花盒數(shù)的2倍,且每盒花的進價比第一批的進價少5元.求第一批盒裝花每盒的進價是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠D=100°,CA平分∠BCD,∠ACB=40°,∠BAC=70°,延長BA至點E.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y1=2x+3與直線l2:y2=kx﹣1交于A點,A點橫坐標(biāo)為﹣1,且直線l1與x軸交于B點,與y軸交于D點,直線l2與y軸交于C點.
(1)求出A點坐標(biāo)及直線l2的解析式;
(2)連接BC,求出S△ABC .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com