【題目】在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD'P,PD'的延長線交邊AB于點M,過點B作BN∥MP交DC于點N,連接AC,分別交PM,PB于點E,F.現(xiàn)有以下結(jié)論:
①連接DD',則AP垂直平分DD';
②四邊形PMBN是菱形;
③AD2=DPPC;
④若AD=2DP,則;
其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號)
【答案】①②③
【解析】
根據(jù)折疊的性質(zhì)得出AP垂直平分DD',判斷出①正確.
過點P作PG⊥AB于點G,易知四邊形DPGA,四邊形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易證△APG∽△PBG,所以PG2=AGGB,即AD2=DPPC判斷出③正確;
DP∥AB,所以∠DPA=∠PAM,由題意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,從而可知PM=MB=AM,又易證四邊形PMBN是平行四邊形,所以四邊形PMBN是菱形;判斷出②正確;
由于,可設(shè)DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,從而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,從而可證△PCF∽△BAF,△PCE∽△MAE,從而可得 ,,從而可求出EF=AF﹣AE=AC﹣=AC,從而可得,判斷出④錯誤.
解:∵將△ADP沿AP翻折得到△AD'P,
∴AP垂直平分DD',故①正確;
解法一:過點P作PG⊥AB于點G,
∴易知四邊形DPGA,四邊形PCBG是矩形,
∴AD=PG,DP=AG,GB=PC
∵∠APB=90°,
∴∠APG+∠GPB=∠GPB+∠PBG=90°,
∴∠APG=∠PBG,
∴△APG∽△PBG,
∴,
∴PG2=AGGB,
即AD2=DPPC;
解法二:易證:△ADP∽△PCB,
∴,
由于AD=CB,
∴AD2=DPPC;故③正確;
∵DP∥AB,
∴∠DPA=∠PAM,
由題意可知:∠DPA=∠APM,
∴∠PAM=∠APM,
∵∠APB﹣∠PAM=∠APB﹣∠APM,
即∠ABP=∠MPB
∴AM=PM,PM=MB,
∴PM=MB,
又易證四邊形PMBN是平行四邊形,
∴四邊形PMBN是菱形;故②正確;
由于,
可設(shè)DP=1,AD=2,
由(1)可知:AG=DP=1,PG=AD=2,
∵PG2=AGGB,
∴4=1GB,
∴GB=PC=4,
AB=AG+GB=5,
∵CP∥AB,
∴△PCF∽△BAF,
∴,
∴
又易證:△PCE∽△MAE,AM=AB=
∴,
∴,
∴EF=AF﹣AE=AC﹣=AC
∴,故④錯誤,
即:正確的有① ② ③,
故答案為:① ② ③.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中已知△ABC三個頂點的坐標(biāo)分別為(-4,3)、(-3,1)、(-1,3),按要求解決下列問題:
(1)將△ABC向右平移1個單位長度,再向下平移4個單位長度,得到,作出;
(2)將繞點O逆時針旋轉(zhuǎn)90°,得到作出
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=5,點E在DC上,將矩形ABCD沿AE折疊,點D恰好落在BC邊上的點F處,求cos∠EFC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,CD切⊙O于點C,AE⊥CD于點E
(1)求證:AC平分∠DAE;
(2)若AB=6,BD=2,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,E為AB上一點,DE=DC,以D為圓心,以DB的長為半徑畫圓.
求證:(1)AC是⊙D的切線;(2)AB+EB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平而直角坐標(biāo)系中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點.正方形ABCD的項點C、D在第一象限,頂點D在反比例函數(shù)y=(k≠0)的圖象上.若正方形ABCD向左平移n個單位后,頂點C恰好落在反比例函數(shù)的圖象上,則n的值是( 。
A.2B.3C.4.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:二元一次不等式是指含有兩個未知數(shù)(即二元),并且未知數(shù)的次數(shù)是1次(即一次)的不等式;滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集.如:x+y>3是二元一次不等式,(1,4)是該不等式的解.有序?qū)崝?shù)對可以看成直角坐標(biāo)平面內(nèi)點的坐標(biāo).于是二元一次不等式(組)的解集就可以看成直角坐標(biāo)系內(nèi)的點構(gòu)成的集合.
(1)已知A(,1),B (1,﹣1),C (2,﹣1),D(﹣1,﹣1)四個點,請在直角坐標(biāo)系中標(biāo)出這四個點,這四個點中是x﹣y﹣2≤0的解的點是 .
(2)設(shè)的解集在坐標(biāo)系內(nèi)所對應(yīng)的點形成的圖形為G.
①求G的面積;
②P(x,y)為G內(nèi)(含邊界)的一點,求3x+2y的取值范圍;
(3)設(shè)的解集圍成的圖形為M,直接寫出拋物線y=x2+2mx+3m2﹣m﹣1與圖形M有交點時m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤=b2-4ac<0中,成立的式子有( )
A. ②④⑤ B. ②③⑤
C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,存在拋物線以及兩點和.
(1)求該拋物線的頂點坐標(biāo);
(2)若該拋物線經(jīng)過點,求此拋物線的表達(dá)式;
(3)若該拋物線與線段只有一個公共點,結(jié)合圖象,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com