【題目】已知,如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點.求證:BD=AE.
【答案】證明:∵△ABC和△ECD都是等腰直角三角形, ∴AC=BC,CD=CE,
∵∠ACB=∠DCE=90°,
∴∠ACE+∠ACD=∠BCD+∠ACD,
∴∠ACE=∠BCD,
在△ACE和△BCD中, ,
∴△ACE≌△BCD(SAS),
∴BD=AE.
【解析】根據等腰直角三角形的性質可得AC=BC,CD=CE,再根據同角的余角相等求出∠ACE=∠BCD,然后利用“邊角邊”證明△ACE和△BCD全等,然后根據全等三角形對應邊相等即可證明.
【考點精析】根據題目的已知條件,利用等腰直角三角形的相關知識可以得到問題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.
科目:初中數學 來源: 題型:
【題目】在一個邊長為a(單位:cm)的正方形ABCD中,點E、M分別是線段AC,CD上的動點,連結DE并延長交正方形的邊于點F,過點M作MN⊥DF于H,交AD于N.
(1)如圖1,當點M與點C重合,求證:DF=MN;
(2)如圖2,假設點M從點C出發(fā),以1cm/s的速度沿CD向點D運動,點E同時從點A出發(fā),以 cm/s速度沿AC向點C運動,運動時間為t(t>0);
①判斷命題“當點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由.
②連結FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關系;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(9分)已知代數式(ax-3)(2x+4)-x2-b化簡后,不含x2項和常數項.
(1)求a,b的值;
(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三個天平的托盤中形狀相同的物體質量相等.圖①、圖②所示的兩個天平處于平衡狀態(tài),要使第三個天平也保持平衡,可在它的右盤中放置( )
A. 3個球 B. 4個球
C. 5個球 D. 6個球
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點,且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.
(1)求△ABC的面積;
(2)設AD=x,圖形L的面積為y,求y關于x的函數解析式;
(3)已知圖形L的頂點均在⊙O上,當圖形L的面積最大時,求⊙O的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地區(qū)為了進一步緩解交通擁堵問題,決定修建一條長為6千米的公路.如果平均每天的修建費y(萬元)與修建天數x(天)之間在30≤x≤120,具有一次函數的關系,如下表所示.
X | 50 | 60 | 90 | 120 |
y | 40 | 38 | 32 | 26 |
(1)求y關于x的函數解析式;
(2)后來在修建的過程中計劃發(fā)生改變,政府決定多修2千米,因此在沒有增減建設力量的情況下,修完這條路比計劃晚了15天,求原計劃每天的修建費.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校研究學生的課余愛好情況,采取抽樣調查的方法,從閱讀、運動、娛樂、上網等四個方面調查了若干名學生的興趣愛好,并將調查結果繪制成下面兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息解答下列問題:
(1)在這次調查中,一共調查了 名學生;
(2)補全條形統(tǒng)計圖;
(3)若該校共有1500名學生,估計愛好運動的學生有 人;
(4)在全校同學中隨機選取一名學生參加演講比賽,用頻率估計概率,則選出的恰好是愛好閱讀的學生的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數;
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com