【題目】如圖,一次函數(shù)與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線經(jīng)過點(diǎn)A,B,點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線BA運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿射線AO運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.
求此拋物線的表達(dá)式;
求當(dāng)為等腰三角形時(shí),所有滿足條件的t的值;
點(diǎn)P在線段AB上運(yùn)動(dòng),請(qǐng)直接寫出t為何值時(shí),的面積達(dá)到最大?此時(shí),在拋物線上是否存在一點(diǎn)T,使得≌?若存在,請(qǐng)直接寫出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)當(dāng)為等腰三角形時(shí),t的值為、或或4;(3)點(diǎn)T的坐標(biāo)為.
【解析】
(1)先求得點(diǎn)A和點(diǎn)B的坐標(biāo),然后把點(diǎn)A和點(diǎn)B的坐標(biāo)滴啊如拋物線的解析式可求得b、c的值,從而可得到拋物線的解析式;
(2)運(yùn)動(dòng)t秒后,AQ=t,BP=2t,先求得AB的長(zhǎng),然后分為QA=QP,AP=AQ,PA=PQ三種情況,求解即可;
(3)過點(diǎn)P作PF⊥AO于點(diǎn)F,延長(zhǎng)FP交拋物線與點(diǎn)T.則AP=4-2t,PF=AP=2-t,然后可得到S△APQ與t的函數(shù)關(guān)系式,從而可求得t的值,于是可得到點(diǎn)P的坐標(biāo),從而可求得點(diǎn)T的坐標(biāo),然后再證明∴△APT≌△APO即可.
把代入中,得.
把代入中,得.
,
把,分別代入中,得,,
拋物線的表達(dá)式為
,,由勾股定理,得,
.
運(yùn)動(dòng)t秒后,,.
為等腰三角形,有,,三種情況,
當(dāng)時(shí),過點(diǎn)Q作于點(diǎn)D.
在中,,
,
.
解得;
當(dāng)時(shí),
若點(diǎn)P在x軸上方的直線AB上,,,
,
解得;
若點(diǎn)P在x軸下方的直線AB上,
,
,
解得:;
當(dāng)時(shí),過點(diǎn)P作于點(diǎn)E.
則,在中,
,
.
解得:
綜上所述,當(dāng)為等腰三角形時(shí),t的值為、或或4.
過點(diǎn)P作于點(diǎn)F,延長(zhǎng)FP交拋物線與點(diǎn)T.
為底邊AQ上的高.
,,
.
.
當(dāng)時(shí),的面積最大此時(shí)點(diǎn)P為AB的中點(diǎn),且.
連接OP,則,
點(diǎn),
點(diǎn)T的橫坐標(biāo)為,
將代入拋物線的解析式得:.
.
在中,由勾股定理可知:,
.
≌.
點(diǎn)T的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡(jiǎn)求值:已知x,y滿足:x2+y2﹣4x+6y+13=0.求代數(shù)式[(3x﹣y)2﹣4(2x+y)(x﹣y)﹣(x﹣3y)(x+3y)]÷(﹣y)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為(﹣2,2)、(1,8).
(1)求三角形ABO的面積;
(2)若y軸上有一點(diǎn)M,且三角形MAB的面積為10,求M點(diǎn)的坐標(biāo);
(3)如圖,把直線AB以每秒2個(gè)單位的速度向右平移,問經(jīng)過多少秒后,該直線與y軸交于點(diǎn)(0,﹣2)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,兩條交叉的公路上分別有A,B兩個(gè)車站,要在這兩條公路之間的S區(qū)域內(nèi)修一個(gè)貨運(yùn)倉(cāng)庫(kù),使它到兩條公路的距離相等,且又要到兩個(gè)車站的距離相等,請(qǐng)你在圖中畫出這個(gè)貨運(yùn)倉(cāng)庫(kù)P的位置.(不寫已知、求作、作法,只保留作圖痕跡)
(2)如圖,在正方形網(wǎng)格中,A,B,C均在格點(diǎn)上,在所給的平面直角坐標(biāo)系中解答下列問題:
①分別寫出B,C兩點(diǎn)的坐標(biāo),及點(diǎn)B關(guān)于軸對(duì)稱的點(diǎn)B′和點(diǎn)C關(guān)于軸對(duì)稱的點(diǎn)C′的坐標(biāo);
②在圖中畫出一個(gè)以A,B,C,D為頂點(diǎn)的四邊形,使其為軸對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)點(diǎn)在第一象限及x軸、y軸上移動(dòng),在第一秒鐘,它從原點(diǎn)移動(dòng)到點(diǎn)(1,0),然后按照?qǐng)D中箭頭所示方向移動(dòng),即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移動(dòng)一個(gè)單位,那么第2018秒時(shí),點(diǎn)所在位置的坐標(biāo)是( ).
A. (6,44)B. (38,44)C. (44,38)D. (44,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,決定開設(shè)以下社團(tuán)活動(dòng)項(xiàng)目:文學(xué)社藝術(shù)社體育社科創(chuàng)社,為了解學(xué)生最喜歡哪一種社團(tuán)活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖,其中圖中A所占扇形的圓心角為請(qǐng)回答下列問題:
這次被調(diào)查的學(xué)生共有______人;
請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
在平時(shí)的科創(chuàng)社活動(dòng)中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加科創(chuàng)比賽,求恰好選中甲、乙兩位同學(xué)的概率用樹狀圖或列表法解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AF分別與BD、CE交于點(diǎn)G、H,∠1=54°,∠2=126°.
(1)求證:BD∥CE;
(2)若AC⊥CE于C,交BD于B,FD⊥BD于D,交CE于E,探索∠A與∠F的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,△ABC中,∠BAC=90°,AB=AC,分別過點(diǎn)B、C作經(jīng)過點(diǎn)A的直線l的垂線段BD、CE,垂足分別D、E.
(1)求證:DE=BD+CE.
(2)如果過點(diǎn)A的直線經(jīng)過∠BAC的內(nèi)部,那么上述結(jié)論還成立嗎?請(qǐng)畫出圖形,直接給出你的結(jié)論(不用證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com