【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)點(diǎn)P為線段BC上方拋物線上(不與B、C重合)的一動(dòng)點(diǎn),連接PC、PB,當(dāng)PBC面積最大時(shí),在y軸找點(diǎn)D,使得PDOD的值最小時(shí),求這個(gè)最小值.

2)如圖2,拋物線對(duì)稱軸與x軸交于點(diǎn)K,與線段BC交于點(diǎn)M,在對(duì)稱軸上取一點(diǎn)R,使得KR12(點(diǎn)R在第一象限),連接BR.已知點(diǎn)N為線段BR上一動(dòng)點(diǎn),連接MN,將BMN沿MN翻折到B'MN.當(dāng)B'MNBMR重疊部分(如圖中的MNQ)為直角三角形時(shí),直接寫(xiě)出此時(shí)點(diǎn)B'的坐標(biāo).

【答案】1PDOD的值最小;(2B'212)或B',4)時(shí),△MNQ為直角三角形.

【解析】

1)由已知可求,求出直線BC的解析式,進(jìn)而設(shè)點(diǎn)P的坐標(biāo),再根據(jù)面積最大時(shí)確定P點(diǎn)的坐標(biāo),最后根據(jù)最短路徑的知識(shí)求出的最小值;

2)根據(jù)題意,重疊部分可以分兩種情況進(jìn)行討論,即①當(dāng)MNB'M,②當(dāng)MNBR時(shí),為直角三角形,進(jìn)而求出B'的坐標(biāo)即可.

1)由已知可求,,

∴直線BC的解析式為,直線AC的解析式為,

設(shè)點(diǎn),

∵過(guò)點(diǎn)P與直線BC垂直的直線解析式為

∴設(shè)直線與直線的交點(diǎn)Q的坐標(biāo)為

,

,

當(dāng)m時(shí),PQ有最大,此時(shí)面積最大,

,

如下圖,作P點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),作直線

過(guò)點(diǎn)P'作直線的垂線交y軸于點(diǎn)D,交直線于點(diǎn)M,

PDP'D,∠DOM60°,

MDOD,

,

OD的最小值為P'M

P'D的解析式為y,

,

P'M,

的值最小;

2)①當(dāng)MNB'M時(shí),為直角三角形,

對(duì)稱軸

,,

KB

直線BC的解析式為

,

MK4MB8,

RM8,

MRKB,

∴∠KRB30°,

∴∠B'30°,

QM4,B'Q,

RQ4,

QN,

;

②當(dāng)MNBR時(shí),為直角三角形,

∵∠MBN=∠MB'N30°,∠KRB30°,

B'R重合,

綜上所述:時(shí),為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線OBCDA表示轎車(chē)離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問(wèn)題:

1)當(dāng)轎車(chē)剛到乙地時(shí),此時(shí)貨車(chē)距離乙地   千米;

2)當(dāng)轎車(chē)與貨車(chē)相遇時(shí),求此時(shí)x的值;

3)在兩車(chē)行駛過(guò)程中,當(dāng)轎車(chē)與貨車(chē)相距20千米時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列命題:

①若,則;

②當(dāng)時(shí),若,則

③直角三角形中斜邊上的中線等于斜邊的一半;

④矩形的兩條對(duì)角線相等.

其中原命題與逆命題均為真命題的個(gè)數(shù)是(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘海輪位于燈塔P的東北方向,距離燈塔80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東30°方向上的B處.

1)若燈塔P周?chē)?/span>50海里范圍內(nèi)有暗礁,海輪從A處到B處的途中,是否有觸礁危險(xiǎn)?

2)若海輪以每小時(shí)30海里的速度從A處到B處,試判斷海輪能否在5小時(shí)內(nèi)到達(dá)B處,并說(shuō)明理由.(參考數(shù)據(jù):≈1.41,≈1.73≈2.45

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在新的教學(xué)改革的推動(dòng)下,某中學(xué)初年級(jí)積極推進(jìn)英語(yǔ)小班教學(xué).為了了解一段時(shí)間以來(lái)的英語(yǔ)小班教學(xué)的學(xué)習(xí)效果,年級(jí)組織了多次定時(shí)測(cè)試,現(xiàn)隨機(jī)選取甲,乙兩個(gè)班,從中各抽取20名同學(xué)在某一次定時(shí)測(cè)試中的英語(yǔ)成績(jī),過(guò)程如下,請(qǐng)補(bǔ)充完整

收集數(shù)據(jù):

甲班的20名同學(xué)的英語(yǔ)成績(jī)統(tǒng)計(jì)(單位:分)

86 90 60 76 92 83 56 76 85 70

96 96 90 68 78 80 68 96 85 81

乙班的20名同學(xué)的英語(yǔ)成績(jī)統(tǒng)計(jì)(滿分為100分)(單位:分)

78 96 75 76 82 87 60 54 87 72

100 82 78 86 70 92 76 80 98 78

整理數(shù)據(jù):(成績(jī)得分用x表示)

數(shù)量分?jǐn)?shù)/

班級(jí)

0≤x60

60≤x70

70≤x80

80≤x90

90≤x≤100

甲班(人數(shù))

1

3

4

6

6

乙班(人數(shù))

1

1

8

6

4

分析數(shù)據(jù):

請(qǐng)回答下列問(wèn)題:

1)完成下表:

平均分

中位數(shù)

眾數(shù)

甲班

80.6

83

a   

乙班

80.35

b   

78

甲班成績(jī)得分扇形圖(x表示分?jǐn)?shù))

2)在班成績(jī)行分的扇形圖中,成績(jī)?cè)?/span>70≤x80的扇形中,所對(duì)的圓心角α的度數(shù)   ,c   

3)根據(jù)以上數(shù)據(jù),你認(rèn)為   班(填)的同學(xué)的學(xué)習(xí)效果更好一些,你的理由是:   ;

4)若英語(yǔ)定時(shí)成績(jī)不低于80分為優(yōu)秀,請(qǐng)估計(jì)全年級(jí)1600人中優(yōu)秀人數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,線段是⊙的直徑,過(guò)點(diǎn)作直線交⊙、兩點(diǎn),過(guò)點(diǎn)作的角平分線交⊙,過(guò)的垂線交

1)證明是⊙的切線

2)證明

3)若⊙的直徑為10,,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形中,,,分別以所在直線為軸和軸建立如圖所示的平面直角坐標(biāo)系,上的一個(gè)動(dòng)點(diǎn)(不與、重合),過(guò)點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn),連接,,

1)若,求點(diǎn)的坐標(biāo);

2)當(dāng)點(diǎn)上移動(dòng)時(shí),的面積差記為,求當(dāng)為何值時(shí),有最大值,最大值是多少?

3)是否存在這樣的點(diǎn),使得為直角三角形?若存在,求出此時(shí)點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小明觀察一個(gè)由1×1正方形點(diǎn)陣組成的點(diǎn)陣圖,圖中水平與豎直方向上任意兩個(gè)相鄰點(diǎn)間的距離都是1.他發(fā)現(xiàn)一個(gè)有趣的問(wèn)題:對(duì)于圖中出現(xiàn)的任意兩條端點(diǎn)在點(diǎn)陣上且互相不垂直的線段,都可以在點(diǎn)陣中找到一點(diǎn)構(gòu)造垂直,進(jìn)而求出交點(diǎn)與垂足之間的數(shù)值.

請(qǐng)回答:

1)如圖1,AB、C是點(diǎn)陣中的三個(gè)點(diǎn),請(qǐng)?jiān)邳c(diǎn)陣中找到點(diǎn)D,作出線段CD,使得CDAB;

2)如圖2,線段ABCD交于點(diǎn)O,小明在點(diǎn)陣中找到了點(diǎn)E,連接AE.恰好滿足AECDE,再作出點(diǎn)陣中的其它線段,就可以構(gòu)造相似三角形,經(jīng)過(guò)推理和計(jì)算能夠使問(wèn)題得到解決.

請(qǐng)你幫小明計(jì)算:OC   OF   ;

參考小明思考問(wèn)題的方法,解決問(wèn)題:

3)如圖3,線段ABCD交于點(diǎn)O.在點(diǎn)陣中找到點(diǎn)E,連接AE,滿足AECDF.計(jì)算: OC   OF   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)AB,C,已知點(diǎn)AC的坐標(biāo)分別是(﹣4,0)和(04),點(diǎn)P在拋物線y=﹣x2+bx+c上.

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

2)如圖2,當(dāng)點(diǎn)P在線段AC的上方,點(diǎn)P的橫坐標(biāo)記為t,過(guò)點(diǎn)PPMAC于點(diǎn)M,當(dāng)PM時(shí),求點(diǎn)P的坐標(biāo);

3)若點(diǎn)E是拋物線對(duì)稱軸上與點(diǎn)D不重合的一點(diǎn),F是平面內(nèi)的一點(diǎn),當(dāng)四邊形CPEF是正方形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案