【題目】將一張長(zhǎng)方形的紙對(duì)折,如圖所示可得到一條折痕(圖中虛線),繼續(xù)對(duì)折,對(duì)折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對(duì)折三次后,可以得7條折痕,那么對(duì)折四次可以得到 條折痕,如果對(duì)折次,可以得到 條折痕.
【答案】15;2n-1.
【解析】
對(duì)前三次對(duì)折分析不難發(fā)現(xiàn)每對(duì)折1次把紙分成的部分是上一次的2倍,折痕比所分成的部分?jǐn)?shù)少1,求出第4次的折痕即可;再根據(jù)對(duì)折規(guī)律求出對(duì)折n次得到的部分?jǐn)?shù),然后減1即可得到折痕條數(shù).
由圖可知,第1次對(duì)折,把紙分成2部分,1條折痕,
第2次對(duì)折,把紙分成4部分,3條折痕,
第3次對(duì)折,把紙分成8部分,7條折痕,
所以,第4次對(duì)折,把紙分成16部分,15條折痕,
…,
依此類推,第n次對(duì)折,把紙分成2n部分,2n1條折痕.
故答案為:15;2n1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有理數(shù)大小關(guān)系判斷正確的是( 。
A. 0>|﹣10| B. ﹣(﹣)>﹣|﹣| C. |﹣3|<|+3| D. ﹣1>﹣0.01
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問(wèn)題,這種方法稱為面積法.請(qǐng)你運(yùn)用面積法求解下列問(wèn)題:在等腰△ABC中,AB=AC,BD為腰AC上的高.
(1)若BD=h,M是直線BC上的任意一點(diǎn),M到AB、AC的距離分別為h1,h2.
A、若M在線段BC上,請(qǐng)你結(jié)合圖形①證明:h1+h2=h;
B、當(dāng)點(diǎn)M在BC的延長(zhǎng)線上時(shí),h1,h2,h之間的關(guān)系為 .(請(qǐng)直接寫出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標(biāo)系中有兩條直線l1:y=x+6;l2:y=﹣3x+6.若l2上的一點(diǎn)M到l1的距離是2,請(qǐng)你利用以上結(jié)論求解點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分9分)
如圖13,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C分別在坐標(biāo)軸上,頂點(diǎn)B的坐標(biāo)為(4,2).過(guò)點(diǎn)D(0,3)和E(6,0)的直線分別與AB,BC交于點(diǎn)M,N.
(1)求直線DE的解析式和點(diǎn)M的坐標(biāo);
(2)若反比例函數(shù)(x>0)的圖象經(jīng)過(guò)點(diǎn)M,求該反比例函數(shù)的解析式,并通過(guò)計(jì)算判斷點(diǎn)N是否在該函數(shù)的圖象上;
(3)若反比例函數(shù)(x>0)的圖象與△MNB有公共點(diǎn),請(qǐng)直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)以每秒的速度沿如圖甲所示的邊框按從的路徑勻速移動(dòng),相應(yīng)的的面積關(guān)于時(shí)間的圖象如圖乙所示,若,試回答下列問(wèn)題:
(1)求出圖甲中的長(zhǎng)和多邊形的面積;
(2)直接寫出圖乙中和的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知四邊形ABCD是正方形,對(duì)角線AC、BD相交于點(diǎn)E,以點(diǎn)E為頂點(diǎn)作正方形EFGH.
(1)如圖1,點(diǎn)A、D分別在EH和EF上,連接BH、AF,直接寫出BH和AF的數(shù)量關(guān)系;
(2)將正方形EFGH繞點(diǎn)E順時(shí)針?lè)较蛐D(zhuǎn).
①如圖2,判斷BH和AF的數(shù)量關(guān)系,并說(shuō)明理由;
②如果四邊形ABDH是平行四邊形,請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形;如果四方形ABCD的邊長(zhǎng)為,求正方形EFGH的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛貨車從超市出發(fā),向東走了3km,到達(dá)小剛家,繼續(xù)向東走了4km到達(dá)小紅家,又向西走了11km到達(dá)小英家,最后回到超市。
(1)請(qǐng)以超市為原點(diǎn),以向東方向?yàn)檎较颍?/span>1個(gè)單位長(zhǎng)度表示1km,畫出數(shù)軸。并在數(shù)軸上表示出小剛家、小紅家、小英家的位置;
(2)小英家距小剛家有多遠(yuǎn)?
(3)貨車一共行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律.例如:若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線段AB的中點(diǎn)表示的數(shù)為.請(qǐng)利用以上結(jié)論解決下列問(wèn)題.
(1)如圖1,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為10,則A、B兩點(diǎn)間的距離AB= ,線段AB的中點(diǎn)表示的數(shù)為 ;
(2)數(shù)軸上另有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q是線段BP的中點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為t秒:
①當(dāng)t=2時(shí),求此時(shí)點(diǎn)Q表示的數(shù);
②如圖2,點(diǎn)P運(yùn)動(dòng)至B點(diǎn)右側(cè),M是線段AQ的中點(diǎn),若B恰好是QM的中點(diǎn),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,點(diǎn)O是AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.
(1)請(qǐng)猜測(cè)OE與OF的大小關(guān)系,并說(shuō)明你的理由;
(2)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?寫出推理過(guò)程;
(3)點(diǎn)O運(yùn)動(dòng)到何處且△ABC滿足什么條件時(shí),四邊形AECF是正方形?(寫出結(jié)論即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com