【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(4,0),點(diǎn)B(0,6),點(diǎn)P是直線AB上的一個(gè)動(dòng)點(diǎn),已知點(diǎn)P的坐標(biāo)為(m,n).
(1)當(dāng)點(diǎn)P在線段AB上時(shí)(不與點(diǎn)A、B重合)
①當(dāng)m=2,n=3時(shí),求△POA的面積.
②記△POB的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出定義域.
(2)如果S△BOP:S△POA=1:2,請(qǐng)直接寫出直線OP的函數(shù)解析式.(本小題只要寫出結(jié)果,不需要寫出解題過(guò)程).
【答案】(1)6;(2)S=3m,0<m<4;(3)y=3x或y= -3x
【解析】
(1)根據(jù)點(diǎn)坐標(biāo)可得△POA的底和高,根據(jù)三角形面積公式計(jì)算;(2)根據(jù)點(diǎn)坐標(biāo)可得△POB的底和高,根據(jù)三角形面積公式列出S與m的解析式;(3)分別討論當(dāng)P在第二、第一、第四象限內(nèi),根據(jù)題意列出等式求P點(diǎn)坐標(biāo),確定直線OP解析式.
解:(1)如圖,過(guò)P作PM⊥x軸,垂足為M,
∵A(4,0),P(2,3),
∴S△POA==.
(2)如圖,過(guò)P作PN⊥y軸,垂足為N,
∵B(0,6),P(m,n),
∴S ==.
∵P在線段AB上(不與點(diǎn)A、B重合)
∴0<m<4
∴S關(guān)于m的函數(shù)解析式為S=3m,0<m<4.
(3)如圖,設(shè)直線AB的解析式為y=kx+b,將A(4,0),B(0,6)代入,
,
解得, ,
∴直線AB的解析式為 ,
∴P(m, ).
∵S△BOP:S△POA=1:2,∴S△POA=2 S△BOP
①當(dāng)m≤0,即點(diǎn)P在第二象限時(shí),
根據(jù)題意得,
解得,m= -4,
∴P(-4,12),
設(shè)直線OP解析式為y=ax,將P點(diǎn)代入,
-4a=12,
解得,a= -3,
∴直線OP解析式為y= -3x;
②當(dāng)0<m≤4,即點(diǎn)P在第一象限時(shí),
根據(jù)題意得,
解得,m= ,
∴P(,4),
設(shè)直線OP解析式為y=ax,將P點(diǎn)代入,
a=4,
解得,a= 3,
∴直線OP解析式為y= 3x;
③當(dāng)m>4,即點(diǎn)P在第四象限時(shí),
根據(jù)題意得,
解得,m= -4(不符合題意,舍去) .
綜上所述,直線OP的解析式為:y=3x或y= -3x
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(m為常數(shù),m>1,x>0)的圖象經(jīng)過(guò)點(diǎn)P(m,1)和Q(1,m),直線PQ與x軸,y軸分別交于C,D兩點(diǎn),點(diǎn)M(x,y)是該函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M分別作x軸和y軸的垂線,垂足分別為A,B.
(1)求∠OCD的度數(shù);
(2)當(dāng)m=3,1<x<3時(shí),存在點(diǎn)M使得△OPM∽△OCP,求此時(shí)點(diǎn)M的坐標(biāo);
(3)當(dāng)m=5時(shí),矩形OAMB與△OPQ的重疊部分的面積能否等于4.1?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,斜邊AB=5,而直角邊BC,AC之長(zhǎng)是一元二次方程x2-(2m-1)x+4(m-1)=0的兩根,則m的值是( )
A. 4 B. -1 C. 4或-1 D. -4或1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y = 2x2 -4x -6.
(1)用配方法將y = 2x2 -4x -6化成y = a (x - h) 2 + k的形式;并寫出對(duì)稱軸和 頂點(diǎn)坐標(biāo)。
(2)在平面直角坐標(biāo)系中,畫出這個(gè)二次函數(shù)的圖象;
(3)當(dāng)時(shí),求y的取值范圍;
(4)求函數(shù)圖像與兩坐標(biāo)軸交點(diǎn)所圍成的三角形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交與點(diǎn)M,交BC于點(diǎn)N,連接AN,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)P.
(1)求證:∠BCP=∠BAN.
(2)若AC=4,PC=3,求MNBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的平分線與的垂直平分線相交于點(diǎn),,,垂足分別為,,,,則的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)解不等式3x﹣5<2 (2 +3x),并把解集表示在數(shù)軸上.
(2)求不等式組 的整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∥,,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),,分別平分和,交射線于點(diǎn),.
(1)求的度數(shù);
(2)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),與之間存在怎樣的數(shù)量關(guān)系?說(shuō)明理由;
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到使時(shí),求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com