如圖,平行四邊形ABCD中,∠BAD的平分線交BC邊于點(diǎn)M,而MD平分∠AMC,若∠MDC=45°,則∠BAD=     ,∠BAC=       
60°,120°

試題分析:由平行四邊形推出∠AMC+∠MAD=180°,∠B+∠BAD=180°,由三角形的內(nèi)角和定理得到∠CMD+2∠MAD=135°,因?yàn)椤螹AD+2∠CMD=180°,解方程組即可求出∠MAD,進(jìn)一步求出∠BAD和∠ABC的度數(shù).
∵平行四邊形ABCD,
∴BC∥AD,∠C=∠BAD,
∴∠AMC+∠MAD=180°,∠B+∠BAD=180°
∵∠BAD的平分線AM,MD平分∠AMC,
∴∠C=∠BAD=2∠MAD,∠AMD=∠CMD,
∵∠C+∠CMD+∠CDM=180°,∠MDC=45°,
即:∠MAD+2∠CMD=180°,且∠CMD+2∠MAD=135°,
解得:∠MAD=30°,
∴∠BAD=60°,∠ABC=120°.
點(diǎn)評(píng):平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中極為重要的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD、等邊△ABE.已知∠ACB=90°、∠BAC=30°,EF⊥AB,垂足為F,連接DF、CF.

(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形;
(3)找出圖中除△ACD、△ABE以外的等邊三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O.

(1)平移△AOB,使得點(diǎn)A移動(dòng)到點(diǎn)D,畫出平移后的三角形(不寫畫法,保留畫圖痕跡);
(2)在第(1)題畫好的圖形中,除了菱形ABCD外,還有哪種特殊的平行四邊形?請(qǐng)給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,P為CD中點(diǎn),點(diǎn)Q為AB上的動(dòng)點(diǎn)(不與A,B重合).過Q作QM⊥PA于M,QN⊥PB于N.設(shè)AQ的長度為x,QM與QN的長度和為y.則能表示y與x之間的函數(shù)關(guān)系的圖象大致是(。


A.                 B.               C.                 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一個(gè)菱形的周長是,兩條對(duì)角線的比是4:3,則這個(gè)菱形的面積是( )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在下列命題中,屬于假命題的是
A.對(duì)角線相等的梯形是等腰梯形;
B.兩腰相等的梯形是等腰梯形;
C.底角相等的梯形是等腰梯形;
D.等腰三角形被平行于底邊的直線截成兩部分,所截得的四邊形是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:四邊形中,對(duì)角線的交點(diǎn)為,上的一點(diǎn),過點(diǎn)于點(diǎn)、交于點(diǎn)

(1)如圖1,若四邊形是正方形,求證:;
(2)如圖2,若四邊形是菱形,.探究線段的數(shù)量關(guān)系,并說明理由;
(3)如圖3,若四邊形是等腰梯形,,且.結(jié)合上面的活動(dòng)經(jīng)驗(yàn),探究線段的數(shù)量關(guān)系為             .(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在四邊形ABCD中,∠A=∠C=90°,∠B=60°,則∠D的外角為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在□ABCD中,AB⊥AC,AB=OA,BC=,對(duì)角線AC、BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC、AD于點(diǎn)EF.

(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試證明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不可能,請(qǐng)說明理由;如果可能,說明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案