【題目】小美周末來到公園,發(fā)現(xiàn)在公園一角有一種“守株待兔”游戲.游戲設(shè)計(jì)者提供了一只兔子和一個(gè)有A,B,C,D,E五個(gè)出入口的兔籠,而且籠內(nèi)的兔子從每個(gè)出入口走出兔籠的機(jī)會(huì)是均等的.規(guī)定:①玩家只能將小兔從A、B兩個(gè)出入口放入,②如果小兔進(jìn)入籠子后選擇從開始進(jìn)入的出入口離開,則可獲得一只價(jià)值5元小兔玩具,否則每玩一次應(yīng)付費(fèi)3元.
(1)請(qǐng)用表格或樹狀圖求小美玩一次“守株待兔”游戲能得到小兔玩具的概率;
(2)假設(shè)有1000人次玩此游戲,估計(jì)游戲設(shè)計(jì)者可賺多少元?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ 中, .取 邊的中點(diǎn) ,作 ⊥ 于點(diǎn) ,取 的中點(diǎn) ,連接 , 交于點(diǎn) .
(1)如圖1,如果 ,求證: ⊥ 并求 的值;
(2)如圖2,如果 ,求證: ⊥ 并用含 的式子表示 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如何把多項(xiàng)式x2+8x+15因式分解?
(1)觀察:上式能否可直接利用完全平方公式進(jìn)行因式分解? 答: ;
(閱讀與理解):由多項(xiàng)式乘法,我們知道(x+a)(x+b)=x2+(a+b)x+ab,將該式從右到左地使用,即可對(duì)形如x2+(a+b)x+ab的多項(xiàng)式進(jìn)行因式分解,即:
x2+(a+b)x+ab=(x+a)(x+b)
此類多項(xiàng)式x2+(a+b)x+ab的特征是二次項(xiàng)系數(shù)為1,常數(shù)項(xiàng)為兩數(shù)之積,一次項(xiàng)系數(shù)為這兩數(shù)之和.
(2)猜想并填空: x2+8x+15= x2+[( ) +( )]x + ( )×( )=(x+ )(x+ )
(3)上面多項(xiàng)式x2+8x+15的因式分解是否正確,我們需要驗(yàn)證.請(qǐng)寫出驗(yàn)證過程.
(4)請(qǐng)運(yùn)用上述方法將下列多項(xiàng)式進(jìn)行因式分解:
① x2+8x+12 ② x2-x-12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線,點(diǎn)P為射線OC上一點(diǎn),OP=4,點(diǎn)M、N分別為OA、OB邊上動(dòng)點(diǎn),則△MNP周長的最小值為( )
A. 2 B. 4 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知:Rt△ABC中,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥m于D,CE⊥m于E,求證:DE=BD+CE;
(2)如圖②,將(1)中的條件改為:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α為任意銳角或鈍角,請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
(3)應(yīng)用:如圖③,在△ABC中,∠BAC是鈍角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直線m與BC的延長線交于點(diǎn)F,若BC=2CF,△ABC的面積是12,求△ABD與△CEF的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)沿一條筆直公路勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)A,B兩城相距 千米,乙車比甲車早到 小時(shí);
(2)甲車出發(fā)多長時(shí)間與乙車相遇?
(3)若兩車相距不超過20千米時(shí)可以通過無線電相互通話,則兩車都在行駛過程中可以通過無線電通話的時(shí)間有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P為平面內(nèi)一點(diǎn),若點(diǎn)P 到⊙O上的點(diǎn)的最長距離為5,最短距離為1,則⊙O 的半徑為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為t(單位:小時(shí)),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:
①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;
②出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;
③出發(fā)3小時(shí)時(shí),甲、乙同時(shí)到達(dá)終點(diǎn);
④甲的速度是乙速度的一半.
其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,A(﹣2,5),B(﹣3,2),C(﹣1,1).
(1)請(qǐng)畫出△ABC關(guān)于y軸的對(duì)稱圖形△A′B′C′,其中A點(diǎn)的對(duì)應(yīng)點(diǎn)是A′,B點(diǎn)的對(duì)應(yīng)點(diǎn)是B′,C點(diǎn)的對(duì)應(yīng)點(diǎn)是C′,并寫出A′,B′,C′三點(diǎn)的坐標(biāo).
(2)求△A′B′C′的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com