【題目】某商店需要購(gòu)進(jìn)A.B兩種商品共160件,其進(jìn)價(jià)和售價(jià)如表:
A | B | |
進(jìn)價(jià)(元/件) | 15 | 35 |
售價(jià)(元/件) | 20 | 45 |
(1)當(dāng)A.B兩種商品分別購(gòu)進(jìn)多少件時(shí),商店計(jì)劃售完這批商品后能獲利1100元;
(2)若商店計(jì)劃購(gòu)進(jìn)A種商品不少于66件,且銷售完這批商品后獲利多于1260元,請(qǐng)你幫該商店老板預(yù)算有幾種購(gòu)貨方案?獲利最大是多少元?
【答案】(1)甲種商品購(gòu)進(jìn)100件,乙種商品購(gòu)進(jìn)60件.(2)方案一:甲種商品購(gòu)進(jìn)66件,乙種商品購(gòu)進(jìn)94件.方案二:甲種商品購(gòu)進(jìn)67件,乙種商品購(gòu)進(jìn)93件,其中獲利最大的是方案一.
【解析】
(1)等量關(guān)系為:甲件數(shù)+乙件數(shù)=160;甲總利潤(rùn)+乙總利潤(rùn)=1100.
(2)設(shè)出所需未知數(shù),甲數(shù)量+乙數(shù)量≥66;甲總利潤(rùn)+乙總利潤(rùn)>1260.
解:(1)設(shè)甲種商品應(yīng)購(gòu)進(jìn)x件,乙種商品應(yīng)購(gòu)進(jìn)y件.
根據(jù)題意得: .解得: .
答:甲種商品購(gòu)進(jìn)100件,乙種商品購(gòu)進(jìn)60件.
(2)設(shè)甲種商品購(gòu)進(jìn)a件,則乙種商品購(gòu)進(jìn)(160﹣a)件.
根據(jù)題意得 .解不等式組,得66≤a<68.
∵a為非負(fù)整數(shù),∴a取66,67.∴160﹣a相應(yīng)取94,93.
方案一:甲種商品購(gòu)進(jìn)66件,乙種商品購(gòu)進(jìn)94件.
方案二:甲種商品購(gòu)進(jìn)67件,乙種商品購(gòu)進(jìn)93件.
最大獲利為;66×5+94×10=1270元;答:有兩種購(gòu)貨方案,其中獲利最大的是方案一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)O,若OE=OF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)求證:四邊形DEBF是平行四邊形;
(3)若OD=OE=OF,則四邊形DEBF是什么特殊的四邊形,請(qǐng)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了滿足學(xué)生借閱圖書的需求,計(jì)劃購(gòu)買一批新書.為此,該校圖書管理員對(duì)一周內(nèi)本校學(xué)生從圖書館借出各類圖書的數(shù)量進(jìn)行了統(tǒng)計(jì),結(jié)果如下圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)補(bǔ)全條形圖和扇形圖;
(2)該校學(xué)生最喜歡借閱哪類圖書?
(3)該校計(jì)劃購(gòu)買新書共600本,若按扇形統(tǒng)計(jì)圖中的百分比來相應(yīng)地確定漫畫、科普、文學(xué)、其它這四類圖書的購(gòu)買量,求應(yīng)購(gòu)買這四類圖書各多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是AB為直徑的半圓周上一點(diǎn),點(diǎn)C在∠PAB的平分線上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,則PE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知反比例函數(shù)y=的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△MON的面積;
(3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.
(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,對(duì)任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=pq(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱pq是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解為112,26或34,因?yàn)?2-1>6-2>4-3,所以34是最佳分解,所以F(n)=。
(1)如果一個(gè)正整數(shù)是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1
(2)如果一個(gè)兩位正整數(shù)t,t=10x+y。1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們就稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合并下列多項(xiàng)式中的同類項(xiàng):
(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1;
(2)﹣a2b+2a2b;
(3)a3﹣a2b+ab2+a2b﹣2ab2+b3;
(4)2a2b+3a2b﹣a2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圖(1)中,A1、B1、C1分別是△ABC的邊BC、CA、AB上的點(diǎn),且A1C1∥AC,A1B1∥AB,B1C1∥BC,在圖(2)中,A2、B2、C2分別是△A1B1C1的邊B1C1、C1A1、A1B1上的點(diǎn),且A2C2∥A1C1,A2B2∥A1B1,B2C2∥B1C1,…,按此規(guī)律,則第n個(gè)圖形中平行四邊形的個(gè)數(shù)共有__個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com