如圖,D、E分別為△ABC的AC,BC邊的中點,將此三角形沿DE折疊,使點C落在AB邊上的點P處,若∠A=46°,有下列結論:①DEAB;②∠APD=46°;③∠ADP=88°;④△PEB是等腰三角形,正確的是______.(只需填寫序號)
∵D、E分別為△ABC的AC,BC邊的中點,
∴DE是△ABC的中位線,
∴DEAB,
∵△PED是△CED翻折變換來的,
∴△PED≌△CED,
∴CD=PD,CE=PE,
∵CD=DA,
∴DA=DP,
∴∠APD=∠A=46°,
∴∠ADP=180°-46°-46°=88°,
∵E為BC中點,
∴CE=EB,
∵CE=PE,
∴PE=EB,
∴△PEB是等腰三角形.
故答案為①②③④.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A處,則AE、AB、BF之間的關系是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運用了“數(shù)形結合”思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設BC=x.則AC=
x2+1
,CE=
(8-x)2+25
,則問題即轉化成求AC+CE的最小值.
(1)我們知道當A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此時x=______;
(2)請你根據(jù)上述的方法和結論,試構圖求出代數(shù)式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形紙片ABCD的邊長AB=4,AD=2.將矩形紙片沿EF折疊,使點A與點C重合,折疊后在其一面著色.
(1)GC的長為______,F(xiàn)G的長為______;
(2)著色面積為______;
(3)若點P為EF邊上的中點,則CP的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,軸對稱圖形ABCDEFG的面積為56,∠A=90°,則點D的坐標是( 。
A.(0,6)B.(0,6.5)C.(0,7)D.(0,7.5)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,是用一張長方形紙條折成的.如果∠1=110°,那么∠2=______°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

取一張矩形的紙進行折疊,具體操作過程如下:
第一步:先把矩形ABCD對折,折痕為MN,如圖1;
第二步:再把B點疊在折痕線MN上,折痕為AE,點B在MN上的對應點為Bn,得Rt△ABE,如圖2;
第三步:沿EB線折疊得折痕EF,如圖3;
利用展開圖4探究:
(1)△AEF是什么三角形?證明你的結論.
(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,∠A=65°,∠B=75°,將紙片的一角折疊,使點C落在△ABC外,若∠2=20°,則∠1的度數(shù)為______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標是(4,0),點B的坐標是(2,3),點C的坐標是(0,3).
(1)作出四邊形OABC關于y軸對稱的圖形,并標出點B對應點的坐標.
(2)在y軸上找一點P,使PA+PB的值最小,并求出點P的坐標.(要求不寫作法,保留作圖痕跡)

查看答案和解析>>

同步練習冊答案