如圖9,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個頂點,梯形的底AD在x軸上,其中A(-2,0),B(-1, -3).

(1)求拋物線的解析式;(3分)
(2)點M為y軸上任意一點,當(dāng)點M到A、B兩點的距離之和為最小時,求此時點M的坐標(biāo);(2分)
(3)在第(2)問的結(jié)論下,拋物線上的點P使S△PAD=4S△ABM成立,求點P坐標(biāo).(4分)


(1)
(2)
(3)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,將拋物線y1=2x2向右平移2個單位,得到拋物線y2的圖象,則y2=               ;

 

 

 

 

 

 

 

(2)P是拋物線y2對稱軸上的一個動點,直線xt平行于y軸,分別與直線yx、拋物線y2交于點AB.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t            

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·大連)(本題12分)如圖15,拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B (3,

0)、C(0,3)三點,對稱軸與拋物線相交于點P、與直線BC相交于點M,連接PB.

(1)求該拋物線的解析式;

(2)拋物線上是否存在一點Q,使△QMB與△PMB的面積相等,若存在,求點Q的坐標(biāo);

若不存在,說明理由;

(3)在第一象限、對稱軸右側(cè)的拋物線上是否存在一點R,使△RPM與△RMB的面積相

等,若存在,直接寫出點R的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

1) 如圖,將拋物線y1=2x2向右平移2個單位,
得到拋物線y2的圖象,則y2=              
(2)P是拋物線y2對稱軸上的一個動點,直線x
t平行于y軸,分別與直線yx、拋物線y2
于點A、B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的
t的值,則t           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1) 如圖,將拋物線y1=2x2向右平移2個單位,得到拋物線y2的圖象,則y2=              ;

(2)P是拋物線y2對稱軸上的一個動點,直線xt平行于y軸,分別與直線yx、拋物線y2交于點A、B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省九年級中考數(shù)學(xué)試卷4(解析版) 題型:解答題

如圖1,拋物線y=nx2-11nx+24n (n<0) 與x軸交于B、C兩點(點B在點C的左側(cè)),拋物線上另有一點A在第一象限內(nèi),且∠BAC=90°.

(1)填空:點B的坐標(biāo)為(_        ),點C的坐標(biāo)為(_        );

(2)連接OA,若△OAC為等腰三角形.

①求此時拋物線的解析式;

②如圖2,將△OAC沿x軸翻折后得△ODC,點M為①中所求的拋物線上點A與點C兩點之間一動點,且點M的橫坐標(biāo)為m,過動點M作垂直于x軸的直線l與CD交于點N,試探究:當(dāng)m為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.

 

查看答案和解析>>

同步練習(xí)冊答案