【題目】如圖1,已知直線ya與拋物線交于A、B兩點(diǎn)(AB的左側(cè)),交y軸于點(diǎn)C

(1)若AB4,求a的值

(2)若拋物線上存在點(diǎn)D(不與AB重合),使,求a的取值范圍

(3)如圖2,直線ykx2與拋物線交于點(diǎn)E、F,點(diǎn)P是拋物線上的動(dòng)點(diǎn),延長(zhǎng)PE、PF分別交直線y=-2M、N兩點(diǎn),MNy軸于Q點(diǎn),求QM·QN的值。

圖1 圖2

【答案】1;(2;(38

【解析】

1)將兩個(gè)函數(shù)解析式聯(lián)立,解一元二次方程求得A、B的橫坐標(biāo),進(jìn)而表示出AB,即可解答;

2)由(1)可得CD=AB=,設(shè)D ,過(guò)點(diǎn)DDHy軸于點(diǎn)H,利用勾股定理可知,進(jìn)而得到,得到,根據(jù)函數(shù)圖象可知,即可求得a的取值范圍;

3)設(shè)E),F),P),分別表示EPFP的解析式,當(dāng)時(shí),求得,,聯(lián)立ykx2,得到,利用一元二次方程根與系數(shù)的關(guān)系得到,代入即可解答.

1)聯(lián)立,

,解得:

2)由(1)知AB=,

CD=AB=

設(shè)D

過(guò)點(diǎn)DDHy軸于點(diǎn)H,則

3)設(shè)E),F),P

EP解析式為

PE代入可得:

當(dāng)時(shí),可求,

同理可求FP的解析式為

又聯(lián)立得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲、乙兩輛貨車都要從A地送貨到B地,甲車先從A地出發(fā)勻速行駛,3小時(shí)后,乙車從A地出發(fā),并沿同一路線勻速行駛,當(dāng)乙車到達(dá)B地后立刻按原速返回,在返回途中第二次與甲車相遇。甲車出發(fā)的時(shí)間記為t (小時(shí)),兩車之間的距離記為y(千米),yt的函數(shù)關(guān)系如圖所示,則乙車第二次與甲車相遇時(shí),甲車距離A___千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是一塊邊長(zhǎng)為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點(diǎn)邊上,點(diǎn)的延長(zhǎng)線上, 設(shè)的長(zhǎng)為米,改造后苗圃的面積為平方米.

(1) 之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);

(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請(qǐng)問(wèn)此時(shí)的長(zhǎng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,且點(diǎn)在點(diǎn)的右側(cè).

)求菱形的周長(zhǎng).

)若⊙沿軸向右以每秒個(gè)單位長(zhǎng)度的速度平移,菱形沿軸向左以每秒個(gè)單位長(zhǎng)度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為(秒),當(dāng)⊙相切,且切點(diǎn)為的中點(diǎn)時(shí),連接,求的值及的度數(shù).

)在()的條件下,當(dāng)點(diǎn)所在的直線的距離為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB6,AC3,∠BAC60°,為⊙O上的一段弧,且∠BOC60°,分別在、線段ABAC上選取點(diǎn)P、E、F,則PEEFFP的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.

(1)求證:PA是⊙O的切線;

(2)若OH⊥AC,OH=1,求DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)A﹣1,0),B50),C0)三點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);

3)點(diǎn)Mx軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,CM,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫出結(jié)論;

(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷售智能機(jī)器人,售價(jià)每臺(tái)為10萬(wàn)元,進(jìn)價(jià)y與銷售量x的函數(shù)關(guān)系式如圖所示。

(1)當(dāng)x=10時(shí),公司銷售機(jī)器人的總利潤(rùn)為___萬(wàn)元;

(2)當(dāng)10x30時(shí),求出yx的函數(shù)關(guān)系式;

(3)問(wèn):銷售量為多少臺(tái)時(shí),公司銷售機(jī)器人的總利潤(rùn)為37.5萬(wàn)元。

查看答案和解析>>

同步練習(xí)冊(cè)答案