23、已知:如圖,BE是⊙O的直徑,點(diǎn)A在EB的延長(zhǎng)線上,弦PD⊥BE,垂足為C,∠AOD=∠APC.
求證:AP是⊙O的切線.
分析:連接OP,只需證明OP⊥AP即可.
解答:證明:連接OP;
∵OP、OD是⊙O的半徑,
∴OP=OD.
∴∠OPD=∠ODP.
∵PD⊥BE,
∴∠OCD=90°.
∴∠ODP+∠AOD=90°.
∵∠AOD=∠APC,
∴∠OPD+∠APC=90°.
∴∠APO=90°.
∴AP是⊙O的切線.
點(diǎn)評(píng):考查了切線的判定定理,能夠充分運(yùn)用已知的直角進(jìn)行證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,BE是⊙O的直徑,CB與⊙O相切于點(diǎn)B,OC∥DE交⊙O于點(diǎn)D,CD的延長(zhǎng)線與BE的延長(zhǎng)線精英家教網(wǎng)交于A點(diǎn).
(1)求證:AC是⊙O的切線;
(2)若AD=4,CD=6,求tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,BE是△ABC的外接圓O的直徑,CD是△ABC的高.
(1)求證:AC•BC=BE•CD;
(2)已知CD=6,AD=3,BD=8,求⊙O的直徑BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,BE是⊙O的直徑,點(diǎn)A在EB的延長(zhǎng)線上,弦PD⊥BE,垂足為C,∠AOD=∠APC.
(1)求證:AP是⊙O的切線;
(2)若AC=4CO,AP=2
5
,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,BE是⊙O的直徑,BC切⊙O于B,弦ED∥OC,連結(jié)CD并延長(zhǎng)交BE的延長(zhǎng)線于點(diǎn)A.
證明:CD是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案