【題目】觀察下列方程的特征及其解的特點(diǎn).

x=-3的解為x1=-1,x2=-2;

x=-5的解為x1=-2,x2=-3;

x=-7的解為x1=-3x2=-4.

解答下列問(wèn)題:

(1)請(qǐng)你寫(xiě)出一個(gè)符合上述特征的方程為____________,其解為x1=-4x2=-5

(2)根據(jù)這類方程特征,寫(xiě)出第n個(gè)方程為________________,其解為x1=-n,x2=-n1;

(3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程x=-2(n2)(其中n為正整數(shù))的解.

【答案】(1) x1=-4,x2=-5(2)x1=-n,x2=-n1(3) x1=-n3,x2=-n4

【解析】試題分析:觀察方程特點(diǎn),可以得到數(shù)據(jù)的關(guān)系.

試題解析:

(1)x=-9 x1=-4,x2=-5;

(2)x=-(2n1) 

x1=-n,x2=-n1;

(3)解:x=-2(n2),

x3=-2(n2)3,

(x3)=-(2n1),

x3=-nx3=-n1,

x1=-n3,x2=-n4.

檢驗(yàn):當(dāng)x=-n3時(shí),x3=-n0

當(dāng)x=-n4時(shí),x3=-n10

∴原分式方程的解是x1=-n3,x2=-n4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次物理競(jìng)賽中,有一道四選二的雙項(xiàng)選擇題,評(píng)分標(biāo)準(zhǔn)是:多選或只要選錯(cuò)一項(xiàng)就不得分,只選一項(xiàng)且對(duì)得1,全對(duì)得3.

(1)小娟在不會(huì)做的情況下,根據(jù)題意決定任選一項(xiàng)作為答案,求她得到1分的概率.

(2)小娜在不會(huì)做的情況下,根據(jù)題意決定任選兩項(xiàng)作答案,用列表法表示小娜答案的所有可能結(jié)果,并求她得到3分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長(zhǎng)方體形狀的包裝盒(A、B、C、D四個(gè)頂點(diǎn)正好重合于底面上一點(diǎn)).已知EFAB邊上,是被剪去一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AEBFxcm.

(1)若折成的包裝盒恰好是正方體,試求這個(gè)包裝盒的體積V;

(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問(wèn)x應(yīng)取何值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi),正方形ABCD與正方形CEFH如圖放置,連接DE,BH,兩線交于M,求證:

(1)BHDE;

(2)BHDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ΔABC中,∠B =∠C,BD=CF,BE=CD,∠EDF=α,則下列結(jié)論正確的是( )

A. 2α+∠A=90° B. 2α+∠A=180°

C. α+∠A=90° D. α+∠A=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,(1)已知∠ABC,射線EDAB,過(guò)點(diǎn)E作∠DEF=∠ABC,試說(shuō)明BCEF;

(2)如圖②,已知∠ABC,射線EDAB,∠ABC+∠DEF=180°.判斷直線BC與直線EF的位置關(guān)系,并說(shuō)明理由;

(3)根據(jù)以上探究,你發(fā)現(xiàn)了一個(gè)什么結(jié)論?請(qǐng)你寫(xiě)出來(lái);

(4)如圖③,已知ACBC,CDAB,DEAC,HFAB,若∠1=48°,試求∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究證明:

(1)如圖1,在ABC中,AB=AC,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),EGAB,EFAC,CDAB,點(diǎn)G,F(xiàn),D分別是垂足.求證:CD=EG+EF;

猜想探究:

(2)如圖2,在ABC中,AB=AC,點(diǎn)E是BC的延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),EGAB于G,EFAC交AC延長(zhǎng)線于F,CDAB于D,直接猜想CD、EG、EF之間的關(guān)系為 CD=EG﹣EF ;

問(wèn)題解決:

(3)如圖3,邊長(zhǎng)為10的正方形ABCD的對(duì)角線相交于點(diǎn)O、H在BD上,且BH=BC,連接CH,點(diǎn)E是CH上一點(diǎn),EFBD于點(diǎn)F,EGBC于點(diǎn)G,則EF+EG=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)求△AOB的面積;

(3)若D(x,0)是x軸上原點(diǎn)左側(cè)的一點(diǎn),且滿足kxb<0,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過(guò)點(diǎn)(-1.-5),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,m).

1)求m的值;

2)求一次函數(shù)y=kx+b的解析式;

3)求這兩個(gè)函數(shù)圖像與x軸所圍成的三角形面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案