【題目】如圖1,正方形ABCD和正方形AEFG,連接DG,BE。
(1)發(fā)現(xiàn)
當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖2,①線段DG與BE之間的數(shù)量關(guān)系是____________。②直線DG與直線BE之間的位置關(guān)系是____________。
(2)探究
如圖3,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE,證明:直線DG⊥BE
(3)應(yīng)用
在(2)情況下,連結(jié)GE(點(diǎn)E在AB上方),若GE∥AB,且AB=,AE=1,則線段DG是多少?(直接寫出結(jié)論)
【答案】 DG=BE DG⊥BE
【解析】試題分析:(1)證明△EAB≌△GAD,可得到BE=DG,∠ABE=∠ADG,再由三角形內(nèi)角和為180°,即可得到結(jié)論;
(2)證明△ABE∽△ADG,再由三角形內(nèi)角和為180°,即可得到結(jié)論;
(3)當(dāng)GE∥AB時(shí),B、E、F三點(diǎn)在一條直線上,且F剛好在DG上.先求出AD,AG的長,再由勾股定理即可得到結(jié)論.
試題解析:解:(1)①DG=BE;②DG⊥BE.理由如下:
延長BE交AD,DG分別為P,H.∵四邊形ABCD和四邊形AEFG都是正方形,∴AB=AD,∠BAD=90°,AE=AG,∠EAG=90°,∴∠EAB=∠GAD.在△EAB和△GAD中,∵AB=AD,∠EAB=∠GAD,AE=AG,∴△EAB≌△GAD,∴BE=DG,∠ABE=∠ADG.∵∠APB=∠HPD(對頂角相等),∴∠BAP=∠DHP=90°,∴BG⊥DG.
(2)延長BE交AD,DG分別為P,H.
∵∠BAE+∠DAE=∠DAG+∠DAE=90°,∴∠BAE=∠DAG.
∵AD=2AB,AG=2AE,∴,∴△ABE∽△ADG,∴∠ABP=∠HDP.
∵∠APB=∠HPD,∴∠BAD=∠DHP=90°,∴ DG⊥BE.
(3) 當(dāng)GE∥AB時(shí),B、E、F三點(diǎn)在一條直線上,且F剛好在DG上,∴∠AEB=90°.∵∠AGD=∠AEB,∴∠AGD=90°.∵AB=,AE=1,∴AG=2AE=2,AD=2AB=,∴DG===4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圖2中,正方形ABCD的邊長為6,點(diǎn)P從點(diǎn)B出發(fā)沿邊BC—CD以每秒2個(gè)單位長的速度向點(diǎn)D勻速運(yùn)動(dòng),以BP為邊作等邊三角形BPQ,使點(diǎn)Q在正方形ABCD內(nèi)或邊上,當(dāng)點(diǎn)Q恰好運(yùn)動(dòng)到AD邊上時(shí),點(diǎn)P停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0)。
(1)當(dāng)t=2時(shí),點(diǎn)Q到BC的距離=_____;
(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),求CQ的最小值及此時(shí)t的值;
(3)若點(diǎn)Q在AD邊上時(shí),如圖2,求出t的值;
(4)直接寫出點(diǎn)Q運(yùn)動(dòng)路線的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的關(guān)系式,并求出PQ與OQ的比值的最大值;
(3)點(diǎn)D是拋物線對稱軸上的一動(dòng)點(diǎn),連接OD、CD,設(shè)△ODC外接圓的圓心為M,當(dāng)sin∠ODC的值最大時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,湛河兩岸AB與EF平行,小亮同學(xué)假期在湛河邊A點(diǎn)處,測得對岸河邊C處視線與湛河岸的夾角∠CAB=37°,沿河岸前行140米到點(diǎn)B處,測得對岸C處的視線與湛河岸夾角∠CBA=45°.問湛河的寬度約多少米?(參考數(shù)據(jù):sin37°≈0.60,cos37°=0.80,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王師傅非常喜歡自駕游,為了解他新買的轎車的耗油情況,將油箱加滿后進(jìn)行了耗油實(shí)驗(yàn),得到下表中的數(shù)據(jù):
轎車行駛的路程 | ······ | |||||
油箱中的剩余油量 | ····· |
(1)在這個(gè)問題中,自變量是_ 因變量是_ ;
(2)該轎車油箱的容量為__ L,行駛時(shí),估計(jì)油箱中的剩余油量為____;
(3)王師傅將油箱加滿后,駕駛該轎車從地前往地,到達(dá)地時(shí)油箱中的剩余油量為,請估計(jì)兩地之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)積極響應(yīng)正在開展的“創(chuàng)文活動(dòng)”,組織甲、乙兩個(gè)志愿工程隊(duì)對社區(qū)的一些區(qū)域進(jìn)行綠化改造.已知甲工程隊(duì)每小時(shí)能完成的綠化面積是乙工程隊(duì)每小時(shí)能完成的綠化面積的2倍,并且甲工程隊(duì)完成300平方米的綠化面積比乙工程隊(duì)完成300平方米的綠化面積少用3小時(shí),乙工程隊(duì)每小時(shí)能完成多少平方米的綠化面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】惠民超市第一次用6000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的多40件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)-進(jìn)價(jià))
甲種商品 | 乙種商品 | |
進(jìn)價(jià)(元/件) | 22 | 30 |
售價(jià)(元/件) | 29 | 40 |
(1)惠民超市購進(jìn)甲、乙兩種商品各多少件?
(2)惠民超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲利潤多少元?
(3)惠民超市第二次以第一次的進(jìn)價(jià)又購進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品每件降價(jià)1元銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多570元,求第二次乙商品是按原價(jià)打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F是BC邊上的點(diǎn),AF=AD+FC,平行四邊形ABCD的面積為S,由A、E、F三點(diǎn)確定的圓的周長為t.
(1)若△ABE的面積為30,直接寫出S的值;
(2)求證:AE平分∠DAF;
(3)若AE=BE,AB=4,AD=5,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,給出以下六個(gè)條件中,以其中三個(gè)作為已知條件,不能判斷△ABC和△DEF全等的是( ) ①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F;
A.①⑤②B.①②③C.④⑥①D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com