【題目】2018年在中央“房子是用來住的,不是用來炒”的精神作用下,房子價(jià)格持續(xù)下跌.玲玲家買了一套新房準(zhǔn)備裝修,若甲、乙兩個(gè)裝飾公司合作,需6周完成,共需裝修費(fèi)為5.2萬元;若甲公司單獨(dú)做4周后,剩下的由乙公司來做,還需9周才能完成,共需裝修費(fèi)為4.8萬元.玲玲的爸爸媽媽商量后決定只選一個(gè)公司單獨(dú)完成.
(1)如果從節(jié)約時(shí)間的角度考慮應(yīng)選哪家公司?
(2)如果從節(jié)約開支的角度考慮應(yīng)選哪家公司?
【答案】(1)從節(jié)約時(shí)間的角度考慮應(yīng)選擇甲公司(2)從節(jié)約開支的角度考慮應(yīng)選擇乙公司
【解析】
如果從節(jié)約時(shí)間角度來考慮,我們可以列出方程組求出甲乙單獨(dú)做所用的時(shí)間即可,如果從節(jié)約經(jīng)費(fèi)考慮,求出他們各自單獨(dú)做的周費(fèi)用,再乘以他們所需時(shí)間即可.
(1)設(shè)甲公司單獨(dú)完成需要m周,乙公司單獨(dú)完成需要n周.依題意得:
,解得 .
故從節(jié)約時(shí)間的角度考慮應(yīng)選擇甲公司.
(2)由(1)知甲、乙兩公司完成這項(xiàng)工程分別需10周、15周.
設(shè)每周需付甲公司裝修費(fèi)x萬元,乙公司y萬元.依題意得:
,解得 ,
所以10x=6(萬元),15y=4(萬元).
故從節(jié)約開支的角度考慮應(yīng)選擇乙公司.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=2 ,D是BC的中點(diǎn),將△OCD沿直線OD折疊后得到△OGD,延長OG交AB于點(diǎn)E,連接DE,則點(diǎn)G的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個(gè)平面圖形.
(1)若固定三根木條AB,BC,AD不動,AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時(shí)∠B與∠D是否相等,并說明理由.
(2)若固定一根木條AB不動,AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當(dāng)點(diǎn)D移到BA的延長線上時(shí),點(diǎn)C也在BA的延長線上;當(dāng)點(diǎn)C移到AB的延長線上時(shí),點(diǎn)A、C、D能構(gòu)成周長為30cm的三角形,求出木條AD,BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=﹣ x﹣1與反比例函數(shù)y2= 的圖象交于點(diǎn)A(﹣4,m).
(1)觀察圖象,在y軸的左側(cè),當(dāng)y1>y2時(shí),請直接寫出x的取值范圍;
(2)求出反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸交于點(diǎn)A(1,0)和B(4,0).
(1)求拋物線的解析式;
(2)若拋物線的對稱軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對稱軸上一點(diǎn),F(xiàn)C∥x軸,與對稱軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)P,使△OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸交于點(diǎn)A(1,0)和B(4,0).
(1)求拋物線的解析式;
(2)若拋物線的對稱軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對稱軸上一點(diǎn),F(xiàn)C∥x軸,與對稱軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)P,使△OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分) 如圖1,將△ABC紙片沿中位線EH折疊,使點(diǎn)A的對稱點(diǎn)D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個(gè)三角形拼合形成一個(gè)矩形.類似地,對多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個(gè)無縫隙、無重疊的矩 形,這樣的矩形稱為疊合矩形.
(1)將□ABCD紙片按圖2的方式折疊成一個(gè)疊合矩形AEFG,則操作形成的折痕分別是線段 , ;S矩形AEFG:S□ABCD=
(2)ABCD紙片還可以按圖3的方式折疊成一個(gè)疊合矩形EFGH,若EF=5,EH=12,求AD的長.
(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把該紙片折疊,得到疊合正方形.請你幫助畫出疊合正方形的示意圖,并求出AD,BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張背面一模一樣的卡片,卡片正面分別寫著一個(gè)函數(shù)關(guān)系式,分別是y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0),將卡片順序打亂后,隨意從中抽取一張,取出的卡片上的函數(shù)是y隨x的增大而增大的概率是( )
A.
B.
C.
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是AD上的點(diǎn),點(diǎn)F是BC的延長線上一點(diǎn),CF=DE,連結(jié)BE和EF,EF與CD交于點(diǎn)G,且∠FBE=∠FEB.
(1)過點(diǎn)F作FH⊥BE于點(diǎn)H,證明: = ;
(2)猜想:BE、AE、EF之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若DG=2,求AE值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com