【題目】在平面直角坐標(biāo)系中,將一點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫這一點(diǎn)的“互換點(diǎn)”,如(﹣3,5)與(5,﹣3)是一對(duì)“互換點(diǎn)”.
(1)任意一對(duì)“互換點(diǎn)”能否都在一個(gè)反比例函數(shù)的圖象上?為什么?
(2)M、N是一對(duì)“互換點(diǎn)”,若點(diǎn)M的坐標(biāo)為(m,n),求直線MN的表達(dá)式(用含m、n的代數(shù)式表示);
(3)在拋物線y=x2+bx+c的圖象上有一對(duì)“互換點(diǎn)”A、B,其中點(diǎn)A在反比例函數(shù)y=﹣ 的圖象上,直線AB經(jīng)過(guò)點(diǎn)P( ),求此拋物線的表達(dá)式.

【答案】
(1)解:不一定,

設(shè)這一對(duì)“互換點(diǎn)”的坐標(biāo)為(a,b)和(b,a).

①當(dāng)ab=0時(shí),它們不可能在反比例函數(shù)的圖象上,

②當(dāng)ab≠0時(shí),由 可得 ,即(a,b)和(b,a)都在反比例函數(shù) (k≠0)的圖象上;


(2)解:由M(m,n)得N(n,m),設(shè)直線MN的表達(dá)式為y=cx+d(c≠0).

則有 解得 ,

∴直線MN的表達(dá)式為y=﹣x+m+n;


(3)解:設(shè)點(diǎn)A(p,q),則 ,

∵直線AB經(jīng)過(guò)點(diǎn)P( ),由(2)得 ,

∴p+q=1,

,

解并檢驗(yàn)得:p=2或p=﹣1,

∴q=﹣1或q=2,

∴這一對(duì)“互換點(diǎn)”是(2,﹣1)和(﹣1,2),

將這一對(duì)“互換點(diǎn)”代入y=x2+bx+c得,

解得 ,

∴此拋物線的表達(dá)式為y=x2﹣2x﹣1.


【解析】(1)設(shè)這一對(duì)“互換點(diǎn)”的坐標(biāo)為(a,b)和(b,a).①當(dāng)ab=0時(shí),它們不可能在反比例函數(shù)的圖象上,②當(dāng)ab≠0時(shí),由 可得 ,于是得到結(jié)論;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到結(jié)論;(3)設(shè)點(diǎn)A(p,q),則 ,由直線AB經(jīng)過(guò)點(diǎn)P( , ),得到p+q=1,得到q=﹣1或q=2,將這一對(duì)“互換點(diǎn)”代入y=x2+bx+c得,于是得到結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí),掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問(wèn)題的一般方法是待定系數(shù)法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形中,,對(duì)角線交于點(diǎn)平分,延長(zhǎng)至點(diǎn),使,連接

1)求證:四邊形是菱形;

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC= ,反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線分別與y軸、x軸交于點(diǎn)A、點(diǎn)B,點(diǎn)C的坐標(biāo)為(-3,0),D為直線AB上一動(dòng)點(diǎn),連接CDy軸于點(diǎn)E.

(1) 點(diǎn)B的坐標(biāo)為__________,不等式的解集為___________

(2) SCOE=SADE,求點(diǎn)D的坐標(biāo)

(3) 如圖2,以CD為邊作菱形CDFG,且∠CDF=60°.當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),點(diǎn)G在一條定直線上運(yùn)動(dòng),請(qǐng)求出這條定直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的每一個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫作格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫(huà)圖.

1)畫(huà)出一個(gè)周長(zhǎng)為24,面積為24的直角三角形;

2)畫(huà)出一個(gè)周長(zhǎng)為20,面積為24的菱形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖,說(shuō)出這個(gè)圖形的旋轉(zhuǎn)中心,它繞旋轉(zhuǎn)中心至少旋轉(zhuǎn)多大角度才能與原來(lái)圖形重合?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系之中,點(diǎn)O為坐標(biāo)原點(diǎn),直線分別交x、y軸于點(diǎn)B、A,直線與直線交于點(diǎn)C

1)如圖1,求點(diǎn)C的坐標(biāo).

2)如圖2,點(diǎn)Pt0)為C點(diǎn)的右側(cè)x軸上一點(diǎn),過(guò)點(diǎn)Px軸垂線分別交AB、OC于點(diǎn)N、M,若MN=5NP,求t的值.

3)如圖3,點(diǎn)F為平面內(nèi)任意一點(diǎn),是否存在y軸正半軸上一點(diǎn)E,使點(diǎn)E、F、M、N圍成的四邊形為菱形,若存在求出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的生產(chǎn)成本為25元,出廠價(jià)為50元.在生產(chǎn)過(guò)程中,平均每生產(chǎn)一件這種產(chǎn)品有0.5m3的污水排出.為凈化環(huán)境,該廠購(gòu)買了一套污水處理設(shè)備,每處理1m3污水所需原材料費(fèi)為2元,每月排污設(shè)備耗費(fèi)4000元.

1)請(qǐng)給出該廠每月的利潤(rùn)與產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

2)為保證每月盈利30000元,該廠每月至少需生產(chǎn)并銷售這種產(chǎn)品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對(duì)外銷售.某樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000元/米2 , 從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元.已知該樓盤每套樓房面積均為120米2 , 若購(gòu)買者一次性付清所有房款,開(kāi)發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;
方案二:降價(jià)l0%,沒(méi)有其他贈(zèng)送.
(1)請(qǐng)寫出售價(jià)y(元/米2)與樓層x( ,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購(gòu)買第十六層的一套樓房,若他一次性付清購(gòu)房款,請(qǐng)幫他計(jì)算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

同步練習(xí)冊(cè)答案