【題目】
如圖,把△EFP放置在菱形ABCD中,使得頂點E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>.
⑴求∠EPF的大。
⑵若AP=8,求AE+AF的值;
⑶若△EFP的三個頂點E,F,P分別在線段AB,AD,AC上運動,請直接寫出AP長的最大值和最小值.
【答案】(1)120°;(2);(3)AP的最大值為12,AP的最小值為6.
【解析】
試題分析:(1)如圖,過點P作PG⊥EF于G,已知PE=PF=6,EF=,根據(jù)等腰三角形的性質可得FG=EG=,∠FPG=∠EPG=.在Rt△FPG中,由sin∠FPG=可求得∠FPG=60°,所以∠EPF=2∠FPG=120°.(2)作PM⊥AB于M,PN⊥AD于N,根據(jù)菱形的性質可得∠DAC=∠BAC,AM=AN,PM=PN,再利用HL證明Rt△PME≌Rt△PNF,即可得NF=ME.又因AP=10,,所以AM= AN =APcos30°==.所以AE+AF=(AM+ME)+(AN-NF)=AM+AN=.(3)如圖,當△EFP的三個頂點E,F(xiàn),P分別在線段AB,AD,AC上運動時,點P在,之間運動,易知,,所以AP的最大值為12,AP的最小值為6.
試題解析:(1)如圖,過點P作PG⊥EF于G.
∵PE=PF=6,EF=,
∴FG=EG=,∠FPG=∠EPG=.
在Rt△FPG中,sin∠FPG=.
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°.
(2)作PM⊥AB于M,PN⊥AD于N.
∵AC為菱形ABCD的對角線,
∴∠DAC=∠BAC,AM=AN,PM=PN.
在Rt△PME和Rt△PNF 中,PM=PN,PE=PF,
∴Rt△PME≌Rt△PNF
∴NF=ME.
又AP=10,,
∴AM= AN =APcos30°==.
∴AE+AF=(AM+ME)+(AN-NF)=AM+AN=.
(3) 如圖,當△EFP的三個頂點E,F(xiàn),P分別在線段AB,AD,AC上運動時,點P在,之間運動,易知,,
∴AP的最大值為12,AP的最小值為6.
科目:初中數(shù)學 來源: 題型:
【題目】四邊形的四邊順次為a、b、c、d,且滿足a2+b2+c2+d2=2(ab+cd),則這個四邊形一定是( )
A.平行四邊形
B.兩組對角分別相等的四邊形
C.對角線互相垂直的四邊形
D.對角線長相等的四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A.12
B.24
C.12
D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,D、E、F分別是BC、AC、AB邊上的中點.
(1)求證:四邊形BDEF是菱形;
(2)若AB=12cm,求菱形BDEF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)( )2﹣(﹣3)0
(2)8a3﹣3a5÷a2
(3)4ab(2a2b2﹣ab+3)
(4)(x+y)2﹣(x﹣y)(x+y)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距離為4,求陰影部分的面積為( )
A.20
B.24
C.25
D.26
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com