【題目】圖①是由五個(gè)完全相同的小正方體組成的立體圖形,將圖①中的一個(gè)小正方體改變位置后如圖②.則三視圖發(fā)生改變的是( )

A. 主視圖B. 俯視圖C. 左視圖D. 主視圖、俯視圖和左視圖

【答案】A

【解析】

根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上邊看得到的圖形是俯視圖對(duì)兩個(gè)組合體進(jìn)行判斷,可得答案.

解:①的主視圖是第一層三個(gè)小正方形,第二層左邊一個(gè)小正方形;左視圖是第一層兩個(gè)小正方形,第二層左邊一個(gè)小正方形;俯視圖是第一層中間一個(gè)小正方形,第二層三個(gè)小正方形;

②的主視圖是第一層三個(gè)小正方形,第二層中間一個(gè)小正方形;左視圖是第一層兩個(gè)小正方形,第二層左邊一個(gè)小正方形;俯視圖是第一層中間一個(gè)小正方形,第二層三個(gè)小正方形;
所以將圖②中的一個(gè)小正方體改變位置后,俯視圖和左視圖均沒(méi)有發(fā)生改變,只有主視圖發(fā)生改變.
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明:兩直線平行,同旁內(nèi)角互補(bǔ)(填空).

已知:如圖,l1l2l1,l2都被l3所截.

求證:∠1+2=180°.

證明:假設(shè)∠1+2________180°. l1l2,∴∠1________3. ∵∠1+2 _______180°,∴∠3+2180°,這和________矛盾,∴假設(shè)∠1+2__________180°不成立,即∠1+2=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=9,AD=6,∠ADC的平分線交AB于點(diǎn)E,交CB的延長(zhǎng)線于點(diǎn)F,AG⊥DE,垂足為G.若AG=4 ,則△BEF的面積是( )

A.
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y= 的圖象如圖所示,則二次函數(shù)y=﹣kx2﹣2x+ 的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1(xy)22x(xy);     2(a1)(a1)(a1)2

3)先化簡(jiǎn),再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AD∥BE,∠B=∠D,直線AB與DC平行嗎?說(shuō)明理由(請(qǐng)?jiān)谙旅娴慕獯疬^(guò)程的空格內(nèi)填空或在括號(hào)內(nèi)填寫(xiě)理由)。

解:直線AB與DC平行.理由如下:

∵ AD∥BE (已知 )

∴ ∠D = ∠DCE (      

又∵∠B = ∠D (        

∴∠B = ∠_____ (等量代換)

∴ AB∥DC (          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1)依次進(jìn)行位似變換、軸對(duì)稱變換和平移變換后得到△A3B3C3

(1)△ABC與△A1B1C1的位似比等于;
(2)在網(wǎng)格中畫(huà)出△A1B1C1關(guān)于y軸的軸對(duì)稱圖形△A2B2C2
(3)請(qǐng)寫(xiě)出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設(shè)點(diǎn)P(x,y)為△ABC內(nèi)一點(diǎn),依次經(jīng)過(guò)上述三次變換后,點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張老師利用休息時(shí)間組織學(xué)生測(cè)量山坡上一棵大樹(shù)CD的高度,如圖,山坡與水平面成30°角(即∠MAN=30°),在山坡底部A處測(cè)得大樹(shù)頂端點(diǎn)C的仰角為45°,沿坡面前進(jìn)20米,到達(dá)B處,又測(cè)得樹(shù)頂端點(diǎn)C的仰角為60°(圖中各點(diǎn)均在同一平面內(nèi)),求這棵大樹(shù)CD的高度(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們已經(jīng)知道,有一個(gè)內(nèi)角是直角的三角形.其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊.數(shù)學(xué)家已發(fā)現(xiàn)在一個(gè)直角三角形中,兩條直角邊邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方.如果設(shè)直角三角形的兩條直角邊長(zhǎng)度分別是,斜邊長(zhǎng)度是,那么可以用數(shù)學(xué)語(yǔ)言表達(dá)為:.

1)在圖中,若,,則等于多少;

2)觀察圖,利用面積與代數(shù)恒等式的關(guān)系,試說(shuō)明的正確性.其中兩個(gè)相同的直角三角形邊、在一條直線上;

3)如圖③所示,折疊長(zhǎng)方形的一邊,使點(diǎn)落在邊的點(diǎn)處,已知,利用上面的結(jié)論求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案