精英家教網(wǎng)如圖,在等腰直角三角形ABC中,∠A=90°,P是△ABC內(nèi)一點(diǎn),PA=1,PB=3,PC=
7
,那么∠CPA=
 
度.
分析:將△ABP繞A點(diǎn)旋轉(zhuǎn),根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠QPA=45°,根據(jù)勾股定理可證出∠PAQ=90°,從而可得出答案.
解答:精英家教網(wǎng)解:將△ABP繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,然后連接PQ,
則AQ=AP=1,CQ=PB=3,∠QAC=∠PAB,
∵∠QAP=90°,
∴∠QPA=45°,
又∵∠PAB+∠PAC=90°,
所以∠PAQ=∠QAC+∠CAP=∠PAB+∠PAC=90°,
所以PQ2=AQ2+AP2=2,且∠QPA=45°,
在△CPQ中,PC2+PQ2=7+2=9=CQ2
∴∠QPC=90°,
∴∠CPA=∠QPA+∠QPC=135°.
故答案為:135°.
點(diǎn)評(píng):本題考查了等腰直角三角形及旋轉(zhuǎn)的性質(zhì),難度很大,解答本題的關(guān)鍵是將△ABP正確的旋轉(zhuǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
(1)sad 60°的值為( B )
A.
1
2
;B.1;C.
3
2
;D.2
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B.1                  C.                  D.2

(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

(1)sad 的值為( ▼ )
A.B.1 C.D.2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

(1)sad 的值為( ▼ )

A.B.1 C.D.2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B. 1                  C.                  D. 2

(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案