【題目】在東昌湖舉行的健身運動會龍舟比賽中,甲、乙兩隊在500米的賽道上,所滑行的路程y(m)與實踐x(min)之間的函數(shù)關(guān)系如圖所示,下列說法正確的有____________.

①乙隊比甲隊提前0. 25min到達終點.

②當乙隊劃行110m時,此時落后甲隊15m.

③0. 5min后,乙隊比甲隊每分鐘快40m.

④自1. 5min開始,甲隊若要與乙隊同時到達終點,甲隊的速度需要提高到255m/min.

【答案】①②③

【解析】

:A.由橫坐標看出乙隊比甲隊提前0.25min到達終點,故A不符合題意;

B.AB段的解析式為y=240x﹣40,當y=110時,x=;甲的解析式為y=200x,當x=時,y=125,當乙隊劃行110m時,此時落后甲隊15m,故B不符合題意;

C.AB段的解析式為y=240x﹣40,乙的速度是240m/min;甲的解析式為y=200x,甲的速度是200m/min,0.5min后,乙隊比甲隊每分鐘快40m,故C不符合題意;

D.甲的解析式為y=200x,當x=1.5時,y=300,甲乙同時到達(500﹣300)÷(2.25﹣1.5)≈267m/min,故D符合題意;

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利過程.下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標,求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達到30萬元;
(3)求第8個月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為(3, ),點C的坐標為(,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( )

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了拉動內(nèi)需,讓惠于農(nóng)民,豐富農(nóng)民的業(yè)余生活,鼓勵送彩電下鄉(xiāng),國家決定實行政府補貼.規(guī)定每購買一臺彩電,政府補貼若干元,經(jīng)調(diào)查某商場銷售彩電臺數(shù)y(臺)與補貼款額x(元)之間大致滿足如圖所示的一次函數(shù)關(guān)系.隨著補貼款額x的不斷增大,銷售量也不斷增加,但每臺彩電的收益p(元)會相應(yīng)降低且滿足:p=﹣ x+110(x≥0).
(1)在政府補貼政策實施后,求出該商場銷售彩電臺數(shù)y與政府補貼款額x之間的函數(shù)關(guān)系式;
(2)在政府未出臺補貼措施之前,該商場銷售彩電的總收益額為多少元?
(3)要使該商場銷售彩電的總收益最大,政府應(yīng)將每臺補貼款額x定為多少?并求出總收益的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于任意三點矩面積,給出如下定義:“水平底為任意兩點橫坐標差的最大值,鉛垂高為任意兩點縱坐標差的最大值,則矩面積.

例如:三點坐標分別為,則水平底,“鉛垂高,“矩面積.

(1)已知點.

①若三點的矩面積12,求點的坐標;

②求三點的矩面積的最小值.

(2)已知點,其中.三點的矩面積8,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,,,給出下列結(jié)論:①;.其中正確的結(jié)論是(

A. ①② B. ②③ C. ①②③ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,弦CD⊥AB于E,∠CDB=15°,OE=2
(1)求⊙O的半徑;
(2)將△OBD繞O點旋轉(zhuǎn),使弦BD的一個端點與弦AC的一個端點重合,則弦BD與弦AC的夾角為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑AB與弦CD的延長線交于點E,若DE=OB,∠AOC=84°,則∠E等于(
A.42°
B.28°
C.21°
D.20°

查看答案和解析>>

同步練習冊答案