【題目】如圖,點(diǎn)P,Q是直線y=﹣上的兩點(diǎn),PQ的左側(cè),且滿足OPOQOPOQ,則點(diǎn)P的坐標(biāo)是_____

【答案】

【解析】

證明△PMO≌△ONQAAS),則PMON,OMQN,設(shè)點(diǎn)Pm,﹣m+2),則點(diǎn)Q(﹣m+2,﹣m),即可求解.

解:分別過(guò)點(diǎn)P、Qx軸的垂線交于點(diǎn)M、N,

OPOQ,

∴∠POM+QON90°,而∠QON+OQN90°,

∴∠OQN=∠MOP,OPOQ,∠PMO=∠ONQ90°,

∴△PMO≌△ONQAAS),

PMON,OMQN,

設(shè)點(diǎn)Pm,﹣m+2),則點(diǎn)Q(﹣m+2,﹣m),

將點(diǎn)Q的坐標(biāo)代入y=﹣得:﹣m=﹣(﹣m+2+2,

解得:m=﹣,

故點(diǎn)P(﹣,),

故答案為:(﹣,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,連接AC,以點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交AB、AC于點(diǎn)M,N,分別以M,N為圓心,大于MN長(zhǎng)的一半為半徑畫(huà)弧,兩弧交于點(diǎn)H,連結(jié)AH并延長(zhǎng)交BC于點(diǎn)E,再分別以A、E為圓心,以大于AE長(zhǎng)的一半為半徑畫(huà)弧,兩弧交于點(diǎn)P,Q,作直線PQ,分別交CD,AC,AB于點(diǎn)F,G,L,交CB的延長(zhǎng)線于點(diǎn)K,連接GE,下列結(jié)論:①∠LKB=22.5°,GEAB,tanCGF=SCGE:SCAB=1:4.其中正確的是( 。

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD、EF相交于點(diǎn)O

1)寫(xiě)出∠COE的鄰補(bǔ)角;

2)分別寫(xiě)出∠COE和∠BOE的對(duì)頂角;

3)如果∠BOD=60°,,求∠DOF和∠FOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書(shū)九章》里記載著這樣一道題:“問(wèn)有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題的大意是:有一塊三角形沙田,三條邊長(zhǎng)分別為5里;12里;13里,問(wèn)這塊沙田面積有多大?題中的1里=0.5千米,則該沙田的面積為( )

A.3平方千米B.7.5平方千米C.15平方千米D.30平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離BC0.7米,梯子頂端到地面的距離AC2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),梯子頂端到地面的距離AD1.5米,求小巷有多寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程組解應(yīng)用題:在首屆“一帶一路”國(guó)際合作高峰論壇舉辦之后,某公司準(zhǔn)備生產(chǎn)甲、乙兩種商品銷往“一帶一路”沿線國(guó)家和地區(qū),原計(jì)劃生產(chǎn)甲商品和乙商品共210噸,采用新技術(shù)后,實(shí)際產(chǎn)量為230噸,其中甲商品超產(chǎn)5%,乙商品超產(chǎn)15%,求該公司實(shí)際生產(chǎn)甲、乙兩種商品各多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B兩地相距300千米,甲、乙兩車同時(shí)從A地出發(fā),以各自的速度勻速向B地行駛.甲車先到達(dá)B地,停留1小時(shí)后,速度不變,按原路返回.設(shè)兩車行駛的時(shí)間是x小時(shí),離開(kāi)A地的距離是y千米,如圖是yx的函數(shù)圖象.

1)甲車的速度是  ,乙車的速度是  ;

2)甲車在返程途中,兩車相距20千米時(shí),求乙車行駛的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度數(shù);

(2)若OF平分∠BOE,問(wèn):OB是∠DOF的平分線嗎?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角三角形中,,直線過(guò)點(diǎn)

1)當(dāng)時(shí),如圖①,分別過(guò)點(diǎn)于點(diǎn),于點(diǎn).求證:

2)當(dāng),時(shí),如圖②,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接、,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿邊向終點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位的速度沿向終點(diǎn)運(yùn)動(dòng),點(diǎn)、到達(dá)相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)于點(diǎn),過(guò)點(diǎn)于點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為秒.

①用含的代數(shù)式表示

②直接寫(xiě)出當(dāng)全等時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案