【題目】如圖,已知Rt△ABC中,∠C=90°,∠B=30°,O為AB邊中點,將△ABC繞點O逆時針旋轉(zhuǎn)60°至△EDA位置,連接CD.
(1)求證:OD⊥BC;
(2)求證:四邊形AODC為菱形.
【答案】見解析
【解析】
試題分析:(1)由旋轉(zhuǎn)的性質(zhì)得出∠DOB=60°.再由已知條件得出∠OFB=90°即可;
(2)證出AC∥OD,連接OC,得出OA=OC=OB,由旋轉(zhuǎn)可知:OD=OB,因此OA=OC=OB=OD,證出△AOC為等邊三角形,得出AC=OA,因此AC=OD,證出四邊形AODC是平行四邊形,再由OA=OD,即可得出四邊形AODC是菱形.
(1)證明:由旋轉(zhuǎn)的性質(zhì)可知:∠DOB=60°.
∵∠B=30°,
∴∠OFB=90°,
∴OD⊥BC;
(2)證明:由(1)知∠OFB=90°,
∵∠ACB=90°,
∴∠ACB=∠OFB,
∴AC∥OD,
在Rt△ABC中,O為AB邊中點,
連接OC,如圖所示:
∴OA=OC=OB由旋轉(zhuǎn)可知:OD=OB,
∴OA=OC=OB=OD,
在Rt△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°
∴△AOC為等邊三角形,
∴AC=OA,
∵OA=OD,
∴AC=OD,
∵AC∥OD,
∴四邊形AODC是平行四邊形,
又∵OA=OD,
∴四邊形AODC是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的關(guān)系式是L1:y=kx2+(k﹣2)x﹣2
(1)下列說法中正確的序號有 :
①當(dāng)k=1時,其頂點坐標(biāo)為(,);
②當(dāng)k=2時,二次函數(shù)的圖象關(guān)于y軸對稱;
③無論k為何非零值,二次函數(shù)都經(jīng)過(﹣1,0)和(0,﹣2);
(2)求證:無論k為何值時,函數(shù)圖象與x軸總有交點;
(3)已知二次函數(shù)L1的圖象與x軸相交于點A、B,頂點為P,若k>0,且△ABP為等邊三角形,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校田徑運動會上,小明和其他三名選手參加100米預(yù)賽,賽場共設(shè)1,2,3,4四條跑道,選手以隨機抽簽的方式?jīng)Q定各自的跑道.若小明首先抽簽,則小明抽到1號跑道的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①全等圖形的形狀相同、大小相等;②全等三角形的對應(yīng)邊相等;③全等三角形的對應(yīng)角相等;④全等三角形的周長、面積分別相等,其中正確的說法為( 。
A. ①②③④ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BA=BC,D,E是AC邊上的兩點,且滿足∠DBE=∠ABC.
(1)如圖1,以點B為旋轉(zhuǎn)中心,將△EBC按順時針方向旋轉(zhuǎn),得到△E′BA(點C與點A重合,點E到點E′處),連接DE′.求證:DE′=DE;
(2)如圖2,若∠ABC=90°,AD=4,EC=2,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ADF和△BCE中,∠A=∠B,點D、E、F、C在同﹣直線上,有如下三個關(guān)系式:①AD=BC;②DE=CF;③BE∥AF。
(1)請用其中兩個關(guān)系式作為條件,另一個作為結(jié)論,寫出所有你認(rèn)為正確的命題.(用序號寫出命題書寫形式,如:如果①、②,那么③)
(2)選擇(1)中你寫出的一個命題,說明它正確的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平整的地面上,有若干個完全相同棱長的小正方體堆成一個幾何體,如圖所示.
(1)請畫出這個幾何體的三視圖.
(2)如果在這個幾何體的表面噴上黃色的漆,則在所有的小正方體中,有 個正方體只有一個面是黃色,有 個正方體只有兩個面是黃色,有 個正方體只有三個面是黃色.
(3)若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加幾個小正方體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的腰和底的長分別是一元二次方程x2﹣6x+8=0的根,則該三角形的周長為( )
A.8 B.10 C.8或10 D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com