【題目】為了深入培養(yǎng)學生交通安全意識,加強實踐活動,新華中學八年級(1)班和交警隊聯(lián)合舉行了“我當一日小交警”活動,利用星期天到交通路口值勤,協(xié)助交通警察對行人、車輛及非機動車輛進行糾章.在這次實踐活動中,若每一個路口安排5名學生,那么還剩下4人;若每個路口安排6人,那么最后一個路口不足3人,但不少于1人.
(1)求新華中學八年級(1)班有多少名學生?
(2)在值勤過程中,學生發(fā)現(xiàn)每輛汽車駛出路口后有三種方式前行:左轉、直行、右轉,而且每種前行方式的可能性相同.請通過畫樹形圖或列表的方法,求連續(xù)駛出路口的兩輛汽車前行路線相同的概率.
【答案】(1)新華中學八年級(1)班有44或49名學;(2)
【解析】
(1)設有x個交通路口,則八年級(1)班人數為(5x+4)名,根據題意列不等式組求解可得;
(2)由樹狀圖求得所有等可能的結果與兩輛汽車前行路線相同的情況,繼而利用概率公式即可求得答案.
解:(1)設有x個交通路口,則八年級(1)班人數為(5x+4)名,
根據題意得,
解得:7<x≤9,
∵x為正整數,
∴x=8或9,所以5x+4=44或49.
答:新華中學八年級(1)班有44或49名學;
(2)列表可得:
第一輛 第二輛 | 左轉 | 直行 | 右轉 |
左轉 | (左轉,左轉) | (直行,左轉) | (右轉,左轉) |
直行 | (左轉,直行) | (直行,直行) | (右轉,直行) |
右轉 | (左轉,右轉) | (直行,右轉) | (右轉,右轉) |
由上表可知,所有可能發(fā)生的結果共有9種,并且它們發(fā)生的可能性都相等,
連續(xù)駛出路口的兩輛汽車前行路線相同的有3種,分別為(左轉,左轉),(直行,直行),(右轉,右轉),
∴連續(xù)駛出路口的兩輛汽車前行路線相同的概率為,
答:連續(xù)駛出路口的兩輛汽車前行路線相同的概率是.
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,AB=6,BC=12,點E在邊BC上,且BE=2CE,將矩形沿過點E的直線折疊,點C,D的對應點分別為C′,D′,折痕與邊AD交于點F,當點B,C′,D′恰好在同一直線上時,AF的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“全民讀書月”活動中,小明調查了班級里40名同學本學期購買課外書的費用情況,并將結果繪制成如圖所示的統(tǒng)計表和扇形統(tǒng)計圖,請根據相關信息,解答下列問題:(直接填寫結果)
費用(元) | 20 | 30 | 50 | 80 | 100 |
人數 | 6 | a | 10 | b | 4 |
(1)本次調查獲取的樣本數據的眾數是 元,中位數是 元;
(2)扇形統(tǒng)計圖中,“50元”所對應的圓心角的度數為 度,該班學生購買課外書的平均費用為 元;
(3)若該校共有學生1000人,根據樣本數據,估計本學期購買課外書花費50元的學生有 人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. “買一張電影票,座位號為偶數”是必然事件
B. 若甲、乙兩組數據的方差分別為S甲2=0.3,S乙2=0.1,則甲組數據比乙組數據穩(wěn)定
C. 一組數據2,4,5,5,3,6的眾數是5
D. 一組數據2,4,5,5,3,6的平均數是5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)
(1)判斷點M是否在直線y=﹣x+4上,并說明理由;
(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;
(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了測量被池塘隔開的A,B兩點之間的距離,根據實際情況,作出如圖所示的圖形,其中AB⊥BE,EF⊥BE,AF交BE于點D,C在BD上,有四位同學分別測量出以下四組數據:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據所測數據,求出A、B間距離的有( )
A. 4組B. 3組C. 2組D. 1組
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知P(﹣3,m)和 Q(1,m)是拋物線y=x2+bx﹣3上的兩點.
(1)求b的值;
(2)將拋物線y=x2+bx﹣3的圖象向上平移k(是正整數)個單位,使平移后的圖象與x軸無交點,求k的最小值;
(3)將拋物線y=x2+bx﹣3的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結合新圖象回答:當直線y=x+n與這個新圖象有兩個公共點時,求n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,AB是曲線,BC是線段,點P從點A出發(fā)以不變的速度沿A﹣B﹣C運動,到終點C停止,過點P分別作x軸、y軸的垂線分別交x軸、y軸于點M、點N,設矩形MONP的面積為S運動時間為(秒),S與t的函數關系如圖2所示,(FD為平行x軸的線段)
(1)直接寫出k、a的值.
(2)求曲線AB的長l.
(3)求當2≤t≤5時關于的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學興趣小組同學進行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度(或坡比)i=1:2.4,求大樹CD的高度?(參考數據:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com