【題目】已知的三個頂點的坐標分別為、

1)畫出關(guān)于坐標原點O成中心對稱的;

2)將繞坐標原點O順時針旋轉(zhuǎn),畫出對應的

3)若以、、、為頂點的四邊形為平行四邊形,請直接寫出在第一象限中的點的坐標 .

【答案】1)詳見解析;(2)詳見解析;(3;

【解析】

1)根據(jù)關(guān)于原點對稱的點的橫坐標與縱坐標都互為相反數(shù)解答;

2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于原點對稱的點A′、B′、C′的坐標,然后順次連接即可,再根據(jù)平面直角坐標系寫出點A′的坐標;

3)根據(jù)平行四邊形的對邊平行且相等解答.

解:(1)如圖所示,△A1B1C1即為所求

2)如圖所示,△ABC′即為所求:

3)第一象限D′的坐標(36).

故答案為:(3,6).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生孝敬父母的情況(選項:A為父母洗一次腳;B幫父母做一次家務;C給父母買一件禮物;D其它),在全校范圍內(nèi)隨機抽取了若干名學生進行調(diào)查,得到如下圖表(部分信息未給出)

根據(jù)以上信息解答下列問題:

1)這次被調(diào)查的學生有多少人?

2)求表中mn,p的值,并補全條形統(tǒng)計圖.

3)該校有1600名學生,估計該校全體學生中選擇B選項的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+8x軸交于A,B兩點,與y軸交于點C,且B(4,0).

(1)求拋物線的解析式及其頂點D的坐標;

(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;

(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初二學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了 名學生;

(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;

(3)請將頻數(shù)分布直方圖補充完整;

(4)如果全市有6000名初二學生,那么在試卷評講課中,“獨立思考”的初二學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OAx軸上,邊OBy軸上,點D在邊CB上,反比例函數(shù)k0)在第一象限的圖象經(jīng)過點E,若正方形AOBC和正方形CDEF的面積之差為6,則k_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是“作以已知線段為斜邊的等腰直角三角形”的尺規(guī)作圖過程.

已知:線段

求作:以為斜邊的一個等腰直角三角形

作法:如圖,

(1)分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于,兩點;

(2)作直線,交于點

(3)以為圓心,的長為半徑作圓,交直線于點;

(4)連接

即為所求作的三角形.

請回答:在上面的作圖過程中,①是直角三角形的依據(jù)是________;②是等腰三角形的依據(jù)是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)(方法回顧)證明:三角形中位線定理.

已知:如圖1,中,D、E分別是AB、AC的中點.

求證:,

證明:如圖1,延長DE到點F,使得,連接CF;

請繼續(xù)完成證明過程;

2)(問題解決)

如圖2,在矩形ABCD中,EAD的中點,G、F分別為AB、CD邊上的點,若,,求GF的長.

3)(思維拓展)

如圖3,在梯形ABCD中,,,EAD的中點,G、F分別為ABCD邊上的點,若,,,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊分別是邊上的點,且 , ,點與點關(guān)于對稱,連接,.

(1)連接,則之間的數(shù)量關(guān)系是 ;

(2)若,求的大。ㄓ的式子表示)

(2)用等式表示線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角尺疊放在一起:

1)如圖①,若∠142,請計算出∠CAE的度數(shù);

2)如圖②,若∠ACE2BCD,請求出∠ACD的度數(shù).

查看答案和解析>>

同步練習冊答案