【題目】如圖1,射線OC∠A0B的內(nèi)部,圖中共有3個角:∠AOB∠AOC∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC∠AOB定分線

1)一個角的平分線______這個角的定分線;(填不是

2)如圖2,若∠MPN= ,且射線PQ∠MPN定分線,則∠MPQ=_____(用含a的代數(shù)式表示出所有可能的結(jié)果)

3)如圖2,若∠MPN=45°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當PQPN90°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t.同時射線PM繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止.PQ∠MPN定分線”時,求t的值。

【答案】1)是;(2 ;(3t1.8秒或3秒或4.5秒時,PQ∠MPN定分線”

【解析】

1)根據(jù)定分線定義即可求解;(2)分3種情況,根據(jù)巧分線定義即可求解;(3)分3種情況,根據(jù)巧分線定義得到方程求解即可.

1)當OC是角∠AOB的平分線時,

∵∠AOB=2AOC,

∴一個角的平分線是這個角的定分線;

故答案為:是

2)∵∠MPN=

∴∠MPQ=

故答案為:

3)依題意有三種情況:

10t=5t+45),

解得t=1.8()

10t=5t+45),

解得t=3();

10t=5t+45),

解得:t=4.5(),

t1.8秒或3秒或4.5秒時,PQ是∠MPN定分線

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB為直角,A(﹣3,a)、B(3,b),a+b﹣12=0,則△AOB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=60°,D是AC上一點,DE⊥AB于E,且CD=2,DE=1,則BC的長為( )

A.2
B.
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角△ABC中,斜邊AB=5,直角邊BC、AC之長是一元二次方程x2﹣(2m﹣1)x+4(m﹣1)=0的兩根,則m的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】威麗商場銷售AB兩種商品,售出1A種商品和4B種商品所得利潤為600元;售出3A種商品和5B種商品所得利潤為1 100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元;

(2)由于需求量大,A,B兩種商品很快售完,威麗商場決定再一次購進A,B兩種商品共34件.如果將這34件商品全部售完后所得利潤不低于4 000元,那么威麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中錯誤的是( )

A.a<0
B.b<0
C.c>0
D.圖象過點(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,林老師在黑板上畫出如圖所示的圖形(其中點B、FC、E在同一直線上),并寫出四個條件:①AB=DE,②BF=EC,③∠B=∠E④∠1=∠2.請你從這四個條件中選出三個作為題設(shè),另一個作為結(jié)論,組成一個真命題,并給予證明.題設(shè):______________;結(jié)論:________(均填寫序號)

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,初三一班數(shù)學(xué)興趣小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°.朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°,已知A點的高度AB為2米,臺階AC的坡度為1: (即AB:BC=1: ),且B,C,E三點在同一條直線上,請根據(jù)以上條件求出樹DE的高度.(測量器的高度忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明同時擲甲、乙兩枚質(zhì)地均勻的小立方體(立方體的每個面上分別標有數(shù)字1,2,3,4,5,6).記甲立方體朝上一面上的數(shù)字為x、乙立方體朝上一面朝上的數(shù)字為y,這樣就確定點P的一個坐標( ),那么點P落在雙曲線 上的概率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案