【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=3,則圖中陰影部分的面積為 .
科目:初中數學 來源: 題型:
【題目】某食品廠從生產的袋裝食品中抽出樣品 20 袋,檢測每袋的質量是否符合標準,超過或不足的部分分別用正、負數來表示,記錄如下表:
①這批樣品的平均質量比標準質量多還是少?用你學過的方法合理解釋;
②若標準質量為 450 克,則抽樣檢測的總質量是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知A、O、B三點在同一直線上,射線OD、OE分別平分∠AOC、∠BOC
(1)求∠DOE的度數;
(2)如圖2,在∠AOD內引一條射線OF,使∠COF=,其他不變,設∠DOF= )
①求∠AOF的度數(用含的代數式表示).
②若∠BOD是∠AOF的2倍,求∠DOF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉90°后得CF,連接EF.
(1)補充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊△ABC中:
(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數;
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;
②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點B順時針旋轉60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是四邊形ABCD外接圓上任意一點,且不與四邊形頂點重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點A到PB和PC的距離之和AE+AF= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了了解學生大課間活動的跳繩情況,隨機抽取了50名學生每分鐘跳繩的次數進行統(tǒng)計,把統(tǒng)計結果繪制成如表和直方圖.
次數 | 70≤x<90 | 90≤x<110 | 110≤x<130 | 130≤x<150 | 150≤x<170 |
人數 | 8 | 23 | 16 | 2 | 1 |
根據所給信息,回答下列問題:
(1)本次調查的樣本容量是;
(2)本次調查中每分鐘跳繩次數達到110次以上(含110次)的共有的共有人;
(3)根據上表的數據補全直方圖;
(4)如果跳繩次數達到130次以上的3人中有2名女生和一名男生,學校從這3人中抽取2名學生進行經驗交流,求恰好抽中一男一女的概率(要求用列表法或樹狀圖寫出分析過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:①AD∥BC;②∠ACB=2∠ADB;③;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正確的結論有_______個.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com