【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B(﹣2,0),點(diǎn)C(8,0),與y軸交于點(diǎn)A.
(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;
(2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
【答案】
(1)
解:將點(diǎn)B,點(diǎn)C的坐標(biāo)分別代入y=ax2+bx+4可得 ,解得 ,
∴二次函數(shù)的表達(dá)式為y=﹣ x2+ x+4
(2)
解:設(shè)點(diǎn)N的坐標(biāo)為(n,0)(﹣2<n<8),
則BN=n+2,CN=8﹣n.
∵B(﹣2,0),C(8,0),
∴BC=10,
在y=﹣ x2+ x+4中令x=0,可解得y=4,
∴點(diǎn)A(0,4),OA=4,
∴S△ABN= BNOA= (n+2)×4=2(n+2),
∵M(jìn)N∥AC,
∴ ,
∴ = = ,
∴ ,
∵﹣ <0,
∴當(dāng)n=3時(shí),即N(3,0)時(shí),△AMN的面積最大
(3)
解:當(dāng)N(3,0)時(shí),N為BC邊中點(diǎn),
∵M(jìn)N∥AC,
∴M為AB邊中點(diǎn),
∴OM= AB,
∵AB= = =2 ,AC= = =4 ,
∴AB= AC,
∴OM= AC
【解析】(1)由B、C的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)可設(shè)N(n,0),則可用n表示出△ABN的面積,由NM∥AC,可求得 ,則可用n表示出△AMN的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時(shí)n的值,即可求得N點(diǎn)的坐標(biāo);(3)由N點(diǎn)坐標(biāo)可求得M點(diǎn)為AB的中點(diǎn),由直角三角形的性質(zhì)可得OM= AB,在Rt△AOB和Rt△AOC中可分別求得AB和AC的長,可求得AB與AC的關(guān)系,從而可得到OM和AC的數(shù)量關(guān)系.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連接FG交BD于點(diǎn)O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校決定組織學(xué)生開展校外拓展活動(dòng),若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.現(xiàn)有甲乙兩種大客車,它們的載客量和租金如下表所示.學(xué)校計(jì)劃此次拓展活動(dòng)的租車總費(fèi)用不超過3100元,為了安全,每輛客車上至少要有2名老師.
客車 | 甲種 | 乙種 |
載客量/(人/輛) | 30 | 42 |
租 金/(元/輛) | 300 | 400 |
(1)參加此次拓展活動(dòng)的老師有 人,參加此次拓展活動(dòng)的學(xué)生有 人;
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為 輛.
(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積為3,BD:DC=2:1,E是AC的中點(diǎn),AD與BE相交于點(diǎn)P,那么四邊形PDCE的面積為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與x軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB.點(diǎn)C 在拋物線上,直線AC與y軸交于點(diǎn)D.
(1)求c的值及直線AC的函數(shù)表達(dá)式;
(2)點(diǎn)P在x軸的正半軸上,點(diǎn)Q在y軸正半軸上,連結(jié)PQ與直線AC交于點(diǎn)M,連結(jié)MO并延長交AB于點(diǎn)N,若M為PQ的中點(diǎn).
①求證:△APM∽△AON;
②設(shè)點(diǎn)M的橫坐標(biāo)為m , 求AN的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:
公交車用時(shí)的頻數(shù) 公交車用時(shí)線路 | 合計(jì) | ||||
59 | 151 | 166 | 124 | 500 | |
50 | 50 | 122 | 278 | 500 | |
45 | 265 | 160 | 30 | 500 |
早高峰期間,乘坐_________(填“”,“”或“”)線路上的公交車,從甲地到乙地“用時(shí)不超過45分鐘”的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)D是y軸上的一點(diǎn),且以B,C,D為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)D的坐標(biāo);
(3)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過點(diǎn)H且與y軸平行的直線與BC,CE分別交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo)及最大面積;
(4)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長最小,求出點(diǎn)P,Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點(diǎn) D 是邊 BC 上的點(diǎn)(與 B、C 兩點(diǎn)不重合),過點(diǎn) D作 DE∥AC,DF∥AB,分別交 AB、AC 于 E、F 兩點(diǎn),下列說法正確的是( )
A. 若 AD 平分∠BAC,則四邊形 AEDF 是菱形
B. 若 BD=CD,則四邊形 AEDF 是菱形
C. 若 AD 垂直平分 BC,則四邊形 AEDF 是矩形
D. 若 AD⊥BC,則四邊形 AEDF 是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市為減小商品的積壓,決定采取降價(jià)銷售的策略,若某商品的原價(jià)為元,隨著不同幅度的降價(jià),日銷量(單位為件)發(fā)生相應(yīng)的變化如表:
降價(jià)(元) | ||||||
日銷量(件) |
這個(gè)表反映了________ 和________ 兩個(gè)變量之間的關(guān)系;
從表中可以看出每降價(jià)元,日銷量增加_ 件;
可以估計(jì)降價(jià)之前的日銷量為_ _件;
設(shè)日銷量為件,降價(jià)為元,由上表呈現(xiàn)的規(guī)律,猜想與的函數(shù)關(guān)系式為_
當(dāng)售價(jià)為元時(shí),日銷量為 ________件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com