a為正整數(shù).記號(hào)[2a+1,2a+2,2a+3]表示2a+1,2a+2,2a+3的最小公倍數(shù),以N表示它,若2a+4整除N,求a.
【答案】分析:利用已知得出一定是整數(shù),利用整除的性質(zhì),得出一定有(2a+1)=k(a+2),或a+1=k(a+2)或2a+3=k(a+2);k為正整數(shù),結(jié)合不等式的性質(zhì)得出a的值.
解答:解:∵2a+1,2a+2,2a+3的最小公倍數(shù)是N,
∴可得到:(2a+1)(a+1)(2a+3)=N,
又因?yàn)?a+4整除N,
一定是整數(shù),
∴一定有(2a+1)=k(a+2),或a+1=k(a+2)或2a+3=k(a+2);
當(dāng)(2a+1)=k(a+2),k為正整數(shù),
∴(2-k)a=2k-1
a=,∵a為正整數(shù),
∴2-k≥2k-1,∴k≤1,又∵k>0,且為正整數(shù),
∴k=1,代入上式得:a=1;
當(dāng)a+1=k(a+2),k為正整數(shù),
∴(1-k)a=2k-1
∴a=,∵a為正整數(shù),
∴2k-1≥1-k,∴k≥,
又∵(1-k)>0,且為正整數(shù),
∴k<1,∴≤k<1.
∴沒(méi)有正整數(shù)k符合要求;
當(dāng)2a+3=k(a+2),k為正整數(shù),
∴(2-k)a=2k-3
∴a=,∵a為正整數(shù),
∴2k-3≥2-k,∴k≥
又∵(2-k)>0,且為正整數(shù),
∴k<2,∴≤x<2;
∴沒(méi)有正整數(shù)k符合要求.
綜上所述:a=1.
點(diǎn)評(píng):此題主要考查了整數(shù)根的求法和最小公倍數(shù)的性質(zhì),以及不等式知識(shí)的綜合應(yīng)用等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

a為正整數(shù).記號(hào)[2a+1,2a+2,2a+3]表示2a+1,2a+2,2a+3的最小公倍數(shù),以N表示它,若2a+4整除N,求a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

a為正整數(shù).記號(hào)[2a+1,2a+2,2a+3]表示2a+1,2a+2,2a+3的最小公倍數(shù),以N表示它,若2a+4整除N,求a.

查看答案和解析>>

同步練習(xí)冊(cè)答案