【題目】從3,0,-1,-2,-3這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),作為函數(shù)y=(5-m2)x和關(guān)于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函數(shù)的圖象經(jīng)過第一、三象限,且方程有實(shí)數(shù)根的概率為 .

【答案】

【解析】解:所得函數(shù)的圖象經(jīng)過第一、三象限,∴5﹣m2>0,∴m2<5,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合題意,將m=0代入(m+1)x2+mx+1=0中得,x2+1=0,△=﹣4<0,無實(shí)數(shù)根;

m=﹣1代入(m+1)x2+mx+1=0中得,﹣x+1=0,x=1,有實(shí)數(shù)根;

m=﹣2代入(m+1)x2+mx+1=0中得,x2+2x﹣1=0,△=4+4=8>0,有實(shí)數(shù)根.

故方程有實(shí)數(shù)根的概率為.故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了預(yù)測本校應(yīng)屆畢業(yè)女生一分鐘跳繩項(xiàng)目考試情況,從九年級隨機(jī)抽取部分女生進(jìn)行該項(xiàng)目測試,并以測試數(shù)據(jù)為樣本,繪制出如圖10所示的部分頻數(shù)分布直方圖(從左到右依次分為六個(gè)小組,每小組含最小值,不含最大值)和扇形統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題:

(1)補(bǔ)全頻數(shù)分布直方圖,并指出這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第 小組;

(2)若測試九年級女生一分鐘跳繩次數(shù)不低于130次的成績?yōu)閮?yōu)秀,本校九年級女生共有260人,請估計(jì)該校九年級女生一分鐘跳繩成績?yōu)閮?yōu)秀的人數(shù);

(3)如測試九年級女生一分鐘跳繩次數(shù)不低于170次的成績?yōu)闈M分,在這個(gè)樣本中,從成績?yōu)閮?yōu)秀的女生中任選一人,她的成績?yōu)闈M分的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是9×7的正方形點(diǎn)陣,其水平方向和豎起直方向的兩格點(diǎn)間的長度都為1個(gè)單位,以這些點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.請通過畫圖分析、探究回答下列問題:

(1)請?jiān)趫D中畫出以AB為邊且面積為2的一個(gè)網(wǎng)格三角形;

(2)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形的面積為2的概率;

(3)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點(diǎn)M,求以A、B、M為頂點(diǎn)的三角形為直角三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°AB=6cm,AD=24cm,BCCD的長度之和為34cm,其中C是直線l上的一個(gè)動(dòng)點(diǎn),請你探究當(dāng)C離點(diǎn)B有多遠(yuǎn)時(shí),ACD是以DC為斜邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】13×13的網(wǎng)格圖中,已知ABC和點(diǎn)M(1,2).

(1)以點(diǎn)M為位似中心,畫出ABC的位似圖形A′B′C′,其中A′B′C′ABC的位似比為2;

(2)寫出A′B′C′的各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】佳佳果品店在批發(fā)市場購買某種水果銷售,第一次用1 200元購進(jìn)若干千克,并以8/kg出售,很快售完.由于水果暢銷,第二次購買時(shí),每千克的進(jìn)價(jià)比第一次提高了10%,1 452元所購買的數(shù)量比第一次多20 kg,9/kg售出100 kg,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價(jià)50%售完剩余的水果.

(1)第一次水果的進(jìn)價(jià)是每千克多少元?

(2)該果品店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ABC、BCD的平分線BECF分別與AD相交于點(diǎn)E、F,BECF相交于點(diǎn)G.

(1)求證:BECF;

(2)AB3,BC5,CF2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A﹣2,4),B﹣2,1),C﹣5,2).

1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1

2)將△A1B1C1的三個(gè)頂點(diǎn)的橫坐標(biāo)與縱坐標(biāo)同時(shí)乘以﹣2,得到對應(yīng)的點(diǎn)A2B2,C2,請畫出△A2B2C2

3)求△A1B1C1△A2B2C2的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABDE,求證:∠DBCDB180°.

證明:過點(diǎn)CCFAB.

ABCF(已知),

∴∠B________(____________________)

ABDE,CFAB(已知),

CFDE(__________________________________)

∴∠2________180°(________________________)

∵∠2BCD________(已知)

∴∠DBCDB180°(等量代換)

查看答案和解析>>

同步練習(xí)冊答案