【題目】我校的北大門是由相同菱形框架組成的伸縮電動推拉門,如圖是大門關(guān)閉時的示意圖,此時 菱形的邊長為0.5m,銳角都是50°.求大門的寬(結(jié)果精確到0.01,參考數(shù)據(jù):sin25°≈0.422 6,cos25°≈0.906 3).

【答案】解:如圖,∠BAD=50°,AB=0.5米,∵在菱形ABCD中,AC⊥BD,∠BAO=25°.∴在Rt△ABO中,BO=sin∠BAOAB,由此可以求出BO,進(jìn)一步求出大門的寬.

如圖,取其中一個菱形ABCD.

根據(jù)題意,得∠BAD=50°,AB=0.5米.

∵在菱形ABCD中,AC⊥BD,∠BAO=25°,

∴在Rt△ABO中,BO=sin∠BAOAB=sin25°×0.5 =0.2113(米).

∴大門的寬是:0.2113×30≈6.34(米).

答:大門的寬大約是6.34米.


【解析】利用菱形的性質(zhì),需連出對角線,構(gòu)造出直角三角形,利用三角函數(shù),先求出BO,再求出大門的寬度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ABAC,AB=2,AC=4.對角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時針旋轉(zhuǎn)α°,分別交直線BC、AD于點(diǎn)E、F.

(1)當(dāng)α=   °,四邊形ABEF是平行四邊形;

(2)在旋轉(zhuǎn)的過程中,從A、B、C、D、E、F中任意4個點(diǎn)為頂點(diǎn)構(gòu)造四邊形.

①α=   °,構(gòu)造的四邊形是菱形;

若構(gòu)造的四邊形是矩形,求出該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,已知矩形紙片ABCD,AD2AB4,將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB、CD交于點(diǎn)G、F,AEFG交于點(diǎn)O

1)如圖1,求證:A、G、E、F四點(diǎn)圍成的四邊形是菱形;

2)如圖2,點(diǎn)N是線段BC的中點(diǎn),且ONOD,求折痕FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

為營造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6分鐘忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前行走,小亮取到借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館.已知單車的速度是步行速度的3倍,如圖是小亮和姐姐距家的路程y(米)與出發(fā)的時間x(分鐘)的函數(shù)圖象,根據(jù)圖象解答下列問題:

小亮在家停留了 分鐘.

求小亮騎單車從家出發(fā)去圖書館時距家的路程y(米)與出發(fā)時間x(分鐘)之間的函數(shù)關(guān)系式.

若小亮和姐姐到圖書館的實(shí)際時間為m分鐘,原計(jì)劃步行到達(dá)圖書館的時間為n分鐘,則n-m= 分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,BDAC于點(diǎn)D,AD3.5cm,點(diǎn)PQ分別為AB、AD上的兩個定點(diǎn)且BPAQ2cm,若在BD上有一動點(diǎn)E使PEQE最短,則PEQE的最小值為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是射線CB上的一動點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點(diǎn)D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點(diǎn)D在線段CB上,∠BAC≠90°時,請你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點(diǎn)D在線段CB的延長線上,∠BAC≠90°時,請將圖3補(bǔ)充完整,并直接寫出此時之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】說理填空:如圖,點(diǎn)EDC的中點(diǎn),EC=EB,∠CDA=120°,DF//BE,且DF平分∠CDA,求證:△BEC為等邊三角形.

解: 因?yàn)?/span>DF平分∠CDA(已知)

所以∠FDC=________

因?yàn)椤?/span>CDA=120°(已知)

所以∠FDC=______°

因?yàn)?/span>DF//BE(已知)

所以∠FDC=_________.(____________________________________

所以∠BEC = 60°,又因?yàn)?/span>EC=EB,(已知)

所以△BCE為等邊三角形.(_____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)F,點(diǎn)E在BD上,且
(1)求證:∠BAE=∠CAD;
(2)求證:△ABE∽△ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次學(xué)科測驗(yàn),學(xué)生得分均為整數(shù),滿分10分,成績達(dá)到6分以上為合格.成績達(dá)到9分為優(yōu)秀.這次測驗(yàn)中甲乙兩組學(xué)生成績分布的條形統(tǒng)計(jì)圖如下:

(1)請補(bǔ)充完成下面的成績統(tǒng)計(jì)分析表:

平均分

方差

中位數(shù)

合格率

優(yōu)秀率

甲組

6.9

2.4

91.7%

16.7%

乙組

1.3

83.3%

8.3%


(2)甲組學(xué)生說他們的合格率、優(yōu)秀率均高于乙組,所以他們的成績好于乙組.但乙組學(xué)生不同意甲組學(xué)生的說法,認(rèn)為他們組的成績要高于甲組.請你給出三條支持乙組學(xué)生觀點(diǎn)的理由.

查看答案和解析>>

同步練習(xí)冊答案