【題目】如圖,南北向MN為我國領海線,即MN以西為我國領海,以東為公海,上午9時50分,我國反走私A艇發(fā)現(xiàn)正東方有一走私艇以13海里/時的速度偷偷向我領海開來,便立即通知正在MN線上巡邏的我國反走私艇B密切注意.反走私艇A和走私艇C的距離是13海里,A、B兩艇的距離是5海里;反走私艇B測得距離C艇12海里,若走私艇C的速度不變,最早會在什么時候進入我國領海?
【答案】走私艇C最早在10時41分進入我國領海.
【解析】
已知走私船的速度,求出走私船到我國領海的距離CE的長即可得出走私船所用的時間,即可得出走私船何時能進入我國領海.由勾股定理逆定理得出△ABC是直角三角形,接著由面積法求出BE的長,再由勾股定理求出CE的長即可.
設MN與AC相交于E,則∠BEC=90°
∵AB2+BC2=52+122=132=AC2,
∴△ABC為直角三角形,且∠ABC=90°,
由于MN⊥CE,所以走私艇C進入我國領海的最短距離是CE,
由S△ABC=AB×BC=AC×BE,得BE=(海里),
由CE2+BE2=122,得CE=(海里),
∴÷13=≈0.85(h)=51(min),
9時50分+51分=10時41分.
答:走私艇C最早在10時41分進入我國領海.
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校學生對以下四個電視節(jié)目:最強大腦、中國詩詞大會、朗讀者、出彩中國人的喜愛情況,隨機抽取了部分學生進行調(diào)查,要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中所提供的信息,完成下列問題:
本次調(diào)查的學生人數(shù)為______;
在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為______;
請將條形統(tǒng)計圖補充完整;
若該校共有3000名學生,估計該校最喜愛中國詩詞大會的學生有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(-3,0),B(4,0),C(0,4). 二次函數(shù)的圖像經(jīng)過A、B、C三點.點P沿AC由點A處向點C運動,同時,點Q沿BO由點B處向點O運動,運動速度均為每秒1個單位長度.當一個點停止運動時,另一個點也隨之停止運動.連接PQ,過點Q作QD⊥x軸,與二次函數(shù)的圖像交于點D,連接PD,PD與BC交于點E. 設點P的運動時間為t秒(t>0).
⑴ 求二次函數(shù)的表達式;
⑵ 在點P、Q運動的過程中,當∠PQA+∠PDQ=90°時,求t的值;
⑶ 連接PB、BD、CD,試探究在點P,Q運動的過程中,是否存在某一時刻,使得四邊形PBDC是平行四邊形?若存在,請求出此時t的值與點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”黃金周期間,某動物園在天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化 (單位:萬人) | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若月日的游客人數(shù)記為萬人,請用含的代數(shù)式表示月日的游客人數(shù),并直接寫出七天內(nèi)游客人數(shù)最多的是哪一天?
(2)若月日的游客人數(shù)為萬人,門票每人元,問黃金周期間該動物園門票總收入是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點A(1,0),點A第一次跳動至點,第二次點跳動至點第三次點跳動至點,第四次點跳動至點……,依此規(guī)律跳動下去,則點與點之間的距離是( )
A. 2017B. 2018C. 2019D. 2020
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下表:
我們把表格中字母的和所得的多項式稱為"'特征多項式",例如:第1格的“特征多項式”為 4x+y,第 2 格的“特征多項式”為 8x+4y, 回答下列問題:
(1)第 3 格的“特征多項式”為 第 4 格的“待征多項式”為 , 第 n 格的“特征多項式”為 .
(2)若第 m 格的“特征多項式”與多項式-24x+2y-5 的和不含有 x 項,求此“特征多項式”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若 x 滿足 (9x)(x4)=4, 求 (4x)2+(x9)2 的值.
設 9x=a,x4=b, 則 (9x)(x4)=ab=4,a+b=(9x)+(x4)=5 ,
∴(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13
請仿照上面的方法求解下面問題:
(1)若 x 滿足 (5x)(x2)=2, 求 (5x)2+(x2)2 的值
(2)已知正方形 ABCD 的邊長為 x , E , F 分別是 AD 、 DC 上的點,且 AE=1 , CF=3 ,長方形 EMFD 的面積是 48 ,分別以 MF 、 DF 作正方形,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點D,E,BD=CD,過點D作⊙O的切線交邊AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com